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1. Einleitung

Wignerfunktionen wurden im Jahr 1932 von Eugene Wigner benutzt um Effekte der (gera-
de aufkommenden) Quantentheorie in der klassischen statistischen Physik zu untersuchen,
sie resultierten aus Hermann Weyls Phasenraumformulierung der Quantenmechanik. Weyl
selbst hatte bereits ein Jahr zuvor, unabhängig von Wigner, eine Funktion mit den glei-
chen Eigenschaften gefunden: Eine Wignerfunktion ist eine Pseudowahrscheinlichkeitsdich-
tefunktion für ein quantenmechanisches System, wobei sich die Wahrscheinlichkeit auf die
Messwerte des Systems unter beliebigen Messungen bezieht. Solche Funktionen definieren
zwar keine echte Wahrscheinlichkeitsdichte, da sie nicht positiv definit sein müssen, jedoch
enthalten sie die korrekten Marginalverteilungen der einzelnen Messungen. Dass es keine
vollständige Wahrscheinlichkeitsdichtefunktion eines quantenmechanischen Systems geben
kann, zeigt alleine die Heisenberg’sche Unschärferelation: Die gleichzeitige Kenntnis der kor-
rekten Wahrscheinlichkeitsverteilungen nicht kommutierender Messungen ist nicht möglich,
eine von beiden lässt sich jedoch immer scharf betrachten, wenn man jegliche Informati-
on der jeweils anderen Verteilung verliert. Aus historischer Sicht waren die Argumente der
Wignerfunktion auf den Ort und den Impuls beschränkt.

Mathematisch betrachtet ist eine Wignerfunktion Wρ für einen Zustand ρ also eine reell-
wertige Funktion der einzelnen Messwerte - bei Orts und Impulsmessung somit Ort q und
Impuls p. Bezieht man sich zunächst auf diese beiden Variablen, so lassen sich die weiteren
Eigenschaften in Formeln angeben. Die Wignerfunktion Wρ(q, p) muss die korrekten Margi-
nalverteilungen enthalten und die Gesamtwahrscheinlichkeit erhalten, es muss also gelten:

∞∫
−∞

Wρ(q, p) dp = 〈q | ρ | q〉 ,
∞∫
−∞

Wρ(q, p) dq = 〈p | ρ | p〉 und

∞∫
−∞

∞∫
−∞

Wρ(q, p) dp dq = 1

Mehr wird im Allgemeinen nicht gefordert und insbesondere nicht die Positivität, die fehlen
würde, sodass Wρ eine echte Wahrscheinlichkeitsdichtefunktion wäre.

Auch in der modernen Physik spielen Wignerfunktio-
nen eine große Rolle, sei es in der Quantenoptik oder
in der Festkörperphysik - die Einsatzmöglichkeiten
bieten sich in vielen Teilbereichen heutiger Forschung.
Für die theoretische Physik ist es umso wichtiger ei-
ne Verallgemeinerung der Wignerfunktion auf ande-
re Observablen zu finden, um mögliche Grenzen der
Quantentheorie zu erforschen und sich nicht nur auf
diese zwei Messungen zu beschränken. Für die Expe-
rimentalphysik spielt dieses nur eine untergeordnete
Rolle, da Ort und Impuls die für die makroskopische
Welt wichtigsten Observablen sind. Die nebenstehen-
de Grafik zeigt beispielsweise eine typische Wigner-
funktion, wie sie in der Quantenoptik Gegenstand aktueller Forschung ist. Sie beschreibt
eine optische Mode eines Nd:YAG-Laser im Vakuum (siehe [SSM+14]).

In dieser Arbeit werden die Möglichkeiten aufgezeigt, die benötigt werden um das Grund-
gerüst der Theorie Wigners, mithilfe der Distributionentheorie, auf allgemeinere Observablen
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1. Einleitung

zu erweitern. Außerdem werden die resultierenden Wignerfunktionen für einige Beispiele
errechnet und dargestellt. Für diese Fälle sind die betrachteten Operatoren auf endlich di-
mensionalen Hilberträumen definiert , um Eigenwertanalysen durchführen zu können, ohne
auf Probleme mit kontinuierlichen und Residualspektren im Funktionalkalkül zu stoßen. Da
die Distributionentheorie jedoch eine Teildisziplin der Funktionalanalysis ist, wird die ma-
thematische Einführung zunächst auch den unendlich dimensionalen Fall berücksichtigen.
Die Erwartungswerttupel von beliebigen Matrizen und Funktionen von Matrizen werden
genauer untersucht und ein Einblick in die Störungstheorie gegeben.
Die endliche Dimension der Observablen wird auch zur Visualisierung benötigt, da nur
Observablen endlicher Dimension in einem Computeralgebra-System implementiert wer-
den können. Diese Observablen werden dann durch hermitesche Matrizen realisiert und
die benötigten Analysemethoden, wie Eigenwertberechnung oder Fourier-Transformationen,
sind in den meisten Programmiersprachen bereits enthalten, sodass handhabbare Laufzeiten
gewährleistet werden können. Die Theorie wird zunächst für Operator-N-Tupel aufgestellt,
die Darstellung wird jedoch nur mit 2-Tupeln diskutiert, um die Wignerfunktion dreidimen-
sional darzustellen. Allen voran wird jedoch die Notation eingeführt.
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2. Mathematische Grundlagen

Dieses Kapitel ist eine Einführung in die mathematischen Grundlagen der Quantentheorie
und enthält die Notation der wichtigsten quantenmechanischen Grundbegriffe. Des Weite-
ren werden die JNR, bestimmte Resultate der linearen Algebra und die Störungstheorie
eingeführt.

2.1. Notation

Die Grundlage der Quantenmechanik bildet ein Hilbertraum (H, 〈·, ·〉). Lineare, beschränkte
Operatoren A : H → H werden geschrieben als A ∈ L(H) und sind insbesondere stetig. Die
Menge der selbstadjungierten Operatoren A = A† ist R(H). Die selbstadjungierten Opera-
toren werden gemeinhin als Observablen bezeichnet.
Oft ist mit der Definition der Observablen auch Projektionswertigkeit verbunden, hier wird
die Projektionswertigkeit jedoch getrennt von dieser Definition betrachtet. Der Definitions-
bereich eines Operators A ist dom(A); im Fall unbeschränkter Operatoren ist der Definiti-
onsbereich dom(A) = H durch den Satz vom abgeschlossenen Graphen nicht möglich.
Das Spektrum eines Operators, also im physikalischen Sinn die Menge der möglichen Messwer-
te, ist definiert durch σ(A) := {λ ∈ C

∣∣ λ1 − A 6∈ L−1(H)}, wobei 1 das Eins-Element des
Hilbertraumes ist und L−1(H) die Menge der invertierbaren, stetigen und linearen Operato-
ren auf H ist. Im Falle endlicher Dimension entspricht das Spektrum einer Matrix der Menge
ihrer Eigenwerte. Die Unterscheidung in verschiedene Arten eines Spektrums (kontinuierlich,
Residual, Punktspektrum, ...) ist in endlichen Dimensionen nicht nötig.
Elemente eines Hilbertraumes werden in der Dirac-Notation als Ket |ψ〉 notiert, Elemen-
te des Dualraumes als Bra 〈ψ|. Ein Operator A heißt positiv (schreibe A ≥ 0), wenn
〈ψ|A|ψ〉 ≥ 0 ∀ |ψ〉 ∈ H. Des Weiteren ist die Menge der Dichteoperatoren auf H mit
S(H) := {ρ ∈ T (H) : ρ ≥ 0,Tr ρ = 1} notiert, wobei T (H) die Menge der Spurklasseope-
ratoren bezeichnet. Zahlen wie ξ sind Element des Grundkörpers K und hervorgehobene
Zahlen ξ aus Kn. In dieser Ausarbeitung gilt weiterhin ~ = 1.

2.2. Distributionentheorie

Die Distributionentheorie, wie sie im Folgenden beschrieben wird, ist weitestgehend an die
Notation von Lars Hörmander (vgl. [Hör90]) angelehnt.

Definition 2.1. Eine Distribution u ist ein stetiges, lineares Funktional auf dem Raum der
Testfunktionen A

u : A → C , also u ∈ L(A,C) =: A′.

Schränkt man den Definitionsbereich X auf ein Y ⊂ X ein, so geschieht das auf dem
Distributionenraum für ein u ∈ A′(X) wie folgt:

uY ∈ A′(Y ) : uY (ϕ) = u(ϕ) mit ϕ ∈ A(Y ).

Dabei kann der Raum der Testfunktionen auf offenem X ⊆ Rn beispielsweise aus glatten
Funktionen E (X) = C∞(X), glatten Funktionen mit kompaktem Träger D(X) = C∞c (X),
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2. Mathematische Grundlagen

oder aus Schwartzfunktionen S (X) bestehen, welche dadurch charakterisiert sind, dass sie
und alle partiellen Ableitungen schneller fallen als jedes Polynom. Formal:

Definition 2.2. Der Schwartz-Raum S (X) ist definiert als

S (X) =

{
ϕ ∈ E (X)

∣∣ ∀ α, β ∈ Nn0 , ∃ C ≥ 0, ∀x ∈ X : sup
x∈X
|xαDβϕ(x)| <∞

}
. (2.1)

Ein stetiges und lineares Funktional, also ein Element aus dem topologischen Dualraum
von S (X) heißt temperierte Distribution. Um von Stetigkeit sprechen zu können wird eine
Topologie auf diesen Räumen benötigt, diese werden durch bestimmte Halbnormfamilien
erzeugt, die im Anhang A.1 zu finden sind.

Des Weiteren gelten die Inklusionen D(X)
dicht
⊆ S (X) ⊆ E (X) und somit für die Dualräume

E ′(X) ⊆ S ′(X) ⊆ D ′(X). Dabei ist der Träger einer Distribution u ∈ D(X)′ definiert durch

supp(u) =

{
x ∈ X

∣∣ ∀A offen
⊆ X ∃ ϕ ∈ D(A) mit u(ϕ(x)) 6= 0

}
.

Es ist erwähnenswert, dass der Dualraum der glatten Funktionen mit kompaktem Träger
(Träger einer Funktion) der Raum der Distributionen ist, der Dualraum der glatten Funk-
tionen aber der Raum der Distributionen mit kompaktem Träger (Träger einer Distribution)
ist1. Die Distributionentheorie bietet noch eine weitere Trägerdefinition, die Aufschluss über
die Regularität einer Distribution liefert: Der singuläre Träger2:

sing supp(u) =

x ∈ X ∣∣ @A offen
⊆ X, @f ∈ E (A) mit u(ϕ) =

∫
A

f(x)ϕ(x)dx ∀ ϕ ∈ D(A)

 .

Dieses ist die streng mathematische Einführung der Distributionentheorie. Die theoretische
Physik verwendet meist eine etwas andere (im Kern jedoch identische) Herangehensweise.
Die theoretische Physik bezeichnet als Distribution ein stetiges und lineares Objekt u, sodass
die Zuordnung

A 3 ϕ 7→
∫
dx u(x)ϕ(x) ∈ R (2.2)

eine Testfunktion auf eine reelle Zahl abbildet. Ist u(x) integrierbar auf X, so ist diese De-
finition mathematisch präzise, obwohl u außerhalb eines Integrals möglicherweise nicht die
Struktur einer Funktion aufweißt. In der physikalischen Sichtweise ist es daher legitim wenn
eine Distribution reellwertige Argumente hat, insofern sie mit einer Testfunktion in einem
Integral steht. Oftmals wird daher auch u als distribution-erzeugende Funktion bezeichnet
und das Funktional u(·) =

∫
X

u(x) · dx als Distribution.

Die Konventionen gehen in diesem Bereich stark auseinander (vgl. beispielsweise [Hör90],
[Jan71] und [Wer11]), was in dieser Auswertung jedoch nur eine untergeordnete Relevanz
haben wird, da Grundzüge der Distributionentheorie bereits ausreichen werden. Die physi-
kalische Sichtweise ist motiviert durch sogenannte reguläre Distributionen u für die immer
eine lokal-integrierbare Funktion f ∈ L1

loc(X) existiert, sodass die Distribution von f erzeugt
wird in der Form

1Eine genauere Klassifikation der einzelnen topologischen Dualräume findet sich im Anhang A.1.
2englisch:

”
singular support“.
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2.2. Distributionentheorie

uf (ϕ) =

∫
X

dx f(x)ϕ(x) = 〈f, ϕ〉L2 .

Wird also, in der mathematischen Sichtweise, eine Testfunktion als Argument einer Distribu-
tion betrachtet, so ist in der physikalischen Sichtweise das L2-Skalarprodukt aus Testfunktion
und Distribution gemeint. An dieser Stelle wird auch die Bedeutung des singulären Trägers
wichtig, denn dieser enthält, anschaulich gesehen, die Menge der Punkte an denen sich eine
Distribution nicht wie eine glatte Funktion verhält und somit keine Regularität in diesen
Punkten aufweißt. An diesen Punkten scheitert also die Integraldarstellung der Distribution.

Betrachtet man jedoch eine beliebige Testfunktion ϕ ∈ D(X), so lässt sich diese mit der
Distribution uϕ(φ) =

∫
X

ϕ(x)φ(x) dx identifizieren. Daraus folgt, dass ein Testfunktionen-

raum ein Teilraum seines topologischen Duals ist und es kann gezeigt werden, dass diese
Inklusion dicht ist (vgl. [Hör90][Th. 4.1.5, p. 89]). Somit lässt sich jede Distribution u als
Grenzwert3 einer Folge von Testfunktionen un(x) schreiben, was noch nützlich sein wird,
wenn eine reine Integraldarstellung weder praktisch noch zulässig ist. Jede Distribution lässt
sich also immer darstellen als

u(ϕ) = lim
n→∞

∫
X

un(x)ϕ(x) dx.

Im Folgenden ist immer, falls nicht anders erwähnt, der Raum der Schwartzfunktionen als
Testfunktionenraum gemeint, da die Fourier-Transformation auf diesem Raum einige starke
Eigenschaften besitzt:

Theorem 2.3. Die Fourier-Transformation F : L1(Rn)→ C0(Rn)

F (f)(t) =: f̂(t) =

∫
Rn
f(x) e−i〈t,x〉dx, t ∈ Rn (2.3)

bildet eingeschränkt auf S (X) einen linearen Automorphismus mit Umkehrfunktion

F−1(f̂)(x) =: f(x) = (2π)
−n
∫
Rn
f̂(t) ei〈t,x〉dt, x ∈ Rn. (2.4)

Beweis. Der Beweis befindet sich in [DJ69][Part II, Ch. 29, p.138].

Man erkennt schnell, dass die obige Formel auch für komplexwertige Vektoren ξ ∈ Cn
Sinn ergibt. Ist dieses der Fall spricht man von einer Fourier-Laplace-Transformation f 7→
F (f)(ξ).
Um die Wignerfunktion später richtig beschreiben zu können, werden die Eigenschaften der
Fourier-Transformation auf temperierte Distributionen erweitert. Dieses geschieht auf dem
Schwartz-Raum durch folgende natürliche Identifikation:

Definition 2.4. Sei u ∈ S ′(X) eine temperierte Distribution. Dann ist die Fourier-
Transformierte F (u)(ϕ) für alle ϕ ∈ S (X) definiert als

F (u)(ϕ) =: û(ϕ) = u(F (ϕ)). (2.5)

3Die benötigte Konvergenz ist bzgl. der schwach-*-Topologie zu verstehen.
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2. Mathematische Grundlagen

Wie bereits durch die Konvergenzeigenschaften von Distributionen erwähnt, wird S ′(X)
mit der schwach-*-Topologie ausgestattet, bezüglich dieser ist die Fourier-Transformation
stetig. Wie bereits erwähnt ergibt die Fourier-Transformation auch mit komplexwertigen
Argumenten Sinn, wenn man das betrachtete Skalarprodukt dementsprechend modifiziert.
Sei u ∈ E ′(X) eine Distribution mit kompaktem Träger, dann ist die Fourier-Laplace-
Transformation für Distributionen definiert durch

F (u)(ξ) =: û(ξ) = u(e−i〈·,ξ〉) = u
(
x 7→ e−i〈x,ξ〉

)
= 〈u, e−i〈·,ξ〉〉, ξ ∈ Cn, x ∈ X. (2.6)

Insbesondere kann gezeigt werden, dass û : Cn −→ C holomorph ist für alle ξ ∈ Cn, bei-
spielsweise in [DJ69][Part II, Ch. 30]. Aufgrund des Satzes von Liouville erkennt man auch,
warum die Fourier-Laplace-Transformation nur eingeschränkt auf den Raum der Distribu-
tionen mit kompaktem Träger wohldefiniert ist, da holomorphe Funktionen die Eigenschaft
haben exponentiell zu steigen - eine Fourier-Transformation wäre in diesem Fall somit nicht
möglich. Auch eine Rücktransformation lässt sich auf S ′(X) definieren: Da für Testfunk-
tionen ϕ die Identität

ˆ̂ϕ = (2π)nϕ̌, mit ϕ̌(x) = ϕ(−x)

bereits durch elementares Rechnen gezeigt werden kann, folgt für temperierte Distributionen
u ∈ S ′(X)

ˆ̂u(f) = (2π)n ǔ(f). (2.7)

Weiterhin lässt sich das Faltungstheorem für Funktionen auf folgende natürliche Art verall-
gemeinern.

Definition 2.5. Die Faltung einer temperierten Distribution u ∈ S ′(X) mit einer Funktion
ϕ ∈ D(X) ist definiert als

(u ∗ ϕ)(x) := u(τxϕ) mit τxϕ(y) := ϕ(x− y),

wodurch sich auch die Faltung zweier Distributionen u1, u2 (mindestens eine mit kompaktem
Träger) konstruieren lässt durch

(u1 ∗ u2) ∗ ϕ = u1 ∗ (u2 ∗ ϕ).

Somit kann das Faltungstheorem für Distributionen auf analoge Weise geschrieben werden,
denn auch auf einem Distributionenraum zerfällt die Fourier-Transformation einer Faltung
in die Multiplikation mit den einzelnen Transformierten:

Theorem 2.6 (Faltungstheorem). Sei u ∈ S ′(X) eine temperierte Distribution und v ∈
E ′(X) eine Distribution mit kompaktem Träger, dann ist u ∗ v ∈ S ′(X) und es gilt das
Faltungstheorem

F (u ∗ v) = (2π)
n
2 F (u) ·F (v).

Eine weitere wichtige Definition, die sich in der späteren Untersuchung als nützlich erweisen
wird, ist die Träger-Funktion einer Menge.
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2.3. Die Joint Numerical Range beliebiger Operator-Tupel

Definition 2.7. Für ∅ 6= K ⊂ Rn abgeschlossen und konvex ist die Träger-Funktion defi-
niert durch

HK : Rn −→ R, HK(η) := sup
x∈K
〈x,η〉, η ∈ Rn.

Die Träger-Funktion ist eines der fundamentalsten Hilfsmittel der konvexen Geometrie und
hilfreich zur Konstruktion von Halbräumen, weil

{x ∈ Rn : 〈x, ξ〉 ≤ HK(ξ)} , ‖ξ‖ = 1

einen Halbraum definiert und die Menge K komplett enthält. Die Träger-Funktion wird nun
für einen sehr wichtigen Satz der Distributionentheorie benötigt.

Da die Fourier-Laplace-Transformierten von Distribution immer holomorph auf Cn sind,
stellt sich die Frage welche holomorphen Funktionen auf diese Weise von Distributionen

”
erzeugt“ werden können. Darüber macht der Satz von Paley-Wiener4 für Distributionen

eine Aussage.

Satz 2.8 (Paley-Wiener-Schwartz). Sei K ∈ Rn kompakt mit Träger-Funktion HK . Ist
weiterhin u ∈ E ′(K) eine Distribution mit Träger in K, so gilt

∃C > 0, N ∈ N : |û(ξ)| ≤ C(1 + |ξ|)NeHK(Im(ξ)), ξ ∈ Cn. (2.8)

Umgekehrt ist jede ganze analytische Funktion auf Cn, die eine Abschätzung der Form (2.8)
erfüllt, die Fourier-Laplace-Transformierte einer Distribution mit Träger in K.

Beweis. Der Beweis befindet sich in [Hör90][Theorem 7.3.1 p. 181].

Lars Hörmander konnte noch eine stärkere Abschätzung an Fourier-Laplace-Transformierte
Distributionen treffen, wenn ausreichend Kenntnis über den singulären Träger der Distribu-
tion besteht und umgekehrt, genauer:

Satz 2.9 (Erweiterung des Satzes von Paley-Wiener-Schwartz). Sei u ∈ E ′(X) und ∅ 6=
K ⊂ Rn konvex und kompakt mit Trägerfunktion HK , dann sind äquivalent:

i) sing supp(u) ⊂ K

ii) ∃N ∈ N, ∃ eine Folge (Cm)m∈{1,2,··· }, sodass |û(ξ)| ≤ Cm (1 + |ξ|)N eHK(Im(ξ))

wenn |Im(ξ)| ≤ m ln(|ξ|+ 1). (2.9)

Beweis. Zu finden in [Hör90][Theorem 7.3.8. p. 186].

2.3. Die Joint Numerical Range beliebiger Operator-Tupel

Für Tj ∈ L(H), j ∈ {1, ..., N} definiert man den gemeinsamen, numerischen Wertebereich5

durch

G(T1, ..., TN ) : = {( 〈T1ψ,ψ〉, ..., 〈TNψ,ψ〉 ) : ‖ψ‖ = 1} .
4In der Version für Distributionen wird der Satz deswegen oft als

”
Satz von Paley-Wiener-Schwartz“ be-

zeichnet.
5englisch:

”
Joint Numerical Range“ - kurz: JNR.
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2. Mathematische Grundlagen

Für den Fall, dass H = Cn ist, folgt die äquivalente Formulierung mit Aj ∈ Cn×n

G(A1, ..., AN ) :=

{(
z†A1z

z†z
, ...,

z†ANz

z†z

)
: z ∈ C \ 0

}
.

Nun ist diese Definition im physikalischen Sinne nicht immer sehr praktisch. Zunächst einmal
würde ein quantenmechanischer Zustand |ψ〉 ∈ H mit

√
〈ψ |ψ〉 = ‖ψ‖ = 1 einem reinen

Zustand entsprechen. Reine Zustände sind Idealisierungen, da die Menge der reinen Zustände
ein Maß von Null hat und dadurch (in einem Labor) nicht realisierbar sind (siehe [Wer16][Ch.
3]).
Des Weiteren ist die Konvexität eine andere wichtige Eigenschaft bestimmter Mengen. Eine
genauere Untersuchung bzgl. der Konvexität der JNR liefert zum Beispiel:

Satz 2.10 (Hausdorff-Toeplitz). Der numerische Wertebereich eines Operators ist konvex
und kompakt.

Beweis. Der Beweis wird in dem Short-Paper [Gus69] behandelt.

Das Problem ist nun jedoch, dass sich die Eigenschaft der Konvexität der JNR nicht auf
beliebig große Operator-Tupel übertragen lässt. Dieser Sachverhalt wird näher untersucht
in [GJK03] und [GZ12].
Diese Probleme stellen sich jedoch nicht, wenn man eine (für die Physik natürliche) Mo-
difikation der JNR durchführt in der Form: Die Joint Numerical Range der Operatoren
Tj ∈ R(H) ist

R(T1, ..., TN ) := {( Tr(ρT1), ...,Tr(ρTN ) ) : ρ ∈ S(H)}. (2.10)

Diese Menge ist nun konvex, da sie das Bild einer affinen Abbildung über dem Raum der
Dichteoperatoren ist. Diese sind nach Definition konvex, da jeder Dichteoperator eine Kon-
vexkombination eindimensionaler Projektoren ist. In dieser Definition erkennt man auch den
Grund der nicht-Konvexität beliebiger Wertebereiche G. Diese sind lediglich Bilder affiner
Abbildungen über dem Raum der reinen Zustände und dieser ist i.A. nicht konvex. Es gilt
also: conv(G(T1, ..., TN )) = R(T1, ..., TN ), wobei conv die konvexe Hülle bezeichnet.

2.4. Die lineare Algebra hermitescher Matrizen

Von fundamentaler Bedeutung in dieser Ausarbeitung sind Ausdrücke der Form

eA :=

∞∑
k=0

Ak

k!
mit A ∈ Cn×n und A0 = 1

der sogenannten Matrixexponentialfunktion. Seien A1, ..., An ∈ Cn×n und ρ eine Dichtema-
trix auf Cn, dann gilt durch die Definition der Matrixexponentialfunktion folgender Zusam-
menhang:

Aj = A†j hermitesch ⇐⇒ iAj = i(A†j) schiefhermitesch

⇐⇒ Uj := eiAj unitär, also U† = U−1.

Satz 2.11 (Dichtematrizen in C2). Die Darstellung der komplexwertigen 2×2-Dichtematrizen
hat eine besonders einfache Form und findet oft Anwendung, wenn Qubits charakterisiert
werden sollen. Man kann jede Dichtematrix ρ ∈ S(C2) schreiben als

12



2.5. Elemente der Störungstheorie

ρ =
1

2

 1 + r1 r1 − ir2

r1 + ir2 1− r3

 =
1

2
(1 + r1σ1 + r2σ2 + r3σ3) (2.11)

mit den spurfreien Paulimatrizen

σ1 =

0 1

1 0

 , σ2 =

0 −i
i 0

 , σ3 =

1 0

0 −1


und der Bedingung r2

1 +r2
2 +r2

3 ≤ 1 für r1, r2, r3 ∈ R. In Kurzform werden die Paulimatrizen
als ~σ = (σ1, σ2, σ3) notiert.

Die Eigenwerte6 einer Matrix A sind die Lösungen λ von det(λ1−A) = 0, dem sog.
charakteristischen Polynom. Ist die Matrix jedoch als Funktion eines äußeren Parameters
veränderlich, so kann die Eigenwertberechnung analog stattfinden, jedoch erhält man als
Lösung Eigenwertfunktionen. Besondere Bedeutung werden in dieser Arbeit die Eigenwerte
von Matrizen nach Multiplikation mit einer komplexen Zahl haben. Formal also

ξ ·A ∈ Cn×n =⇒ (ξ ·A) ϕ = λ(ξ)ϕ.

Das charakteristische Polynom ist dann kein Polynom im eigentlichen Sinne mehr, da nun
einzelne Matrixelemente innerhalb der Determinante Funktionen sind

det(λ(ξ)1− ξ ·A) = 0
Lösungen

=⇒ σp(ξ ·A) = {λ1(ξ), · · · , λn(ξ)}.

Die Erwartungswerttupel sind dann definiert als

a = (∇λ1(ξ), . . . ,∇λn(ξ))
T

=: ∇ξλ(ξ).

Explizite Darstellungen solcher Eigenwertfunktionen und der Erwartungswerttupel werden
in den nächsten Kapiteln häufiger auftreten.

2.5. Elemente der Störungstheorie

Die Notation der Störungstheorie stammt größtenteils aus [Wer16]. Eine größere Einführung
in dieses Themengebiet, der korrekte Umgang mit entarteten Eigenwerten und nicht analy-
tische Störungen werden jedoch in [Kat82][p. 72 ff.] behandelt. Eine komplette Einführung
in die Störung von Punktspektra und die Approximation der Grundzustände von sogenann-
ten Schrödingeroperatoren bietet [RS78][Ch. XII]. Die hier verwendeten Methoden werden
jedoch zunächst auf Matrizen ohne Entartung angewandt.
Im Allgemeinen betrachtet man Operatoren, die sich schreiben lassen als H(ξ) = H0 + ξH1

mit einem kleinen Parameter ξ ∈ C. Die zu lösende Eigenwertgleichung lautet dann

H(ξ) |Ψ〉 = (H0 + ξH1) |Ψ〉 = En(ξ) |Ψ〉 . (2.12)

Angenommen das Spektrum und die Eigenvektoren von H0 seien bekannt, dann ist es Auf-
gabe der Störungstheorie Spektrum und Eigenvektoren von H in Abhängigkeit von ξ zu

6Im Folgenden mit σp für das Punktspektrum bezeichnet.
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2. Mathematische Grundlagen

ermitteln. Oft wird auch ξ = 1 gesetzt, um H1 selbst als kleine Störung zu betrachten.
Betrachtet man wieder den endlich dimensionalen Fall, so sind Eigenwerte En(ξ) und Ei-
genvektoren |Ψn(ξ)〉 gesucht und ein Potenzreihenansatz in Potenzen von ξ liefert in vielen
Fällen gute Näherungen. In endlichen Dimensionen ist die Störungstheorie als Teilgebiet der
linearen Algebra vollständig verstanden und alle auftretenden Ausdrücke sind vollständig
analytisch7. Die Potenzreihen setzt man folgendermaßen an:

En(ξ) =

∞∑
k=0

E(k)
n ξn und |Ψn(ξ)〉 =

∞∑
k=0

∣∣∣Ψ(k)
n

〉
ξn.

Die hochgestellte Zahl in Klammern bezieht sich dabei auf die Ableitung nach dem Para-
meter, in Analogie zur Taylorreihe:

E(k)
n =

1

k!

dkEn
dξk

und
∣∣∣Ψ(k)

n

〉
=

1

k!

dk |Ψn〉
dξk

.

Setzt man nun die Potenzreihenansätze in die Eigenwertgleichung (2.12) ein und ordnet
die einzelnen Terme in Potenzen von ξ, so ergeben sich Eigenwerte in erster und zweiter
Näherung durch

E(1)
n =

〈
Ψ(0)
n

∣∣∣H1

∣∣∣Ψ(0)
n

〉
(2.13)

E(2)
n =

∑
m

∣∣ 〈Ψ
(0)
m

∣∣∣H1 − E(1)
n

∣∣∣Ψ(0)
n

〉 ∣∣2
E

(0)
n − E(0)

m

, E(0)
n 6= E(0)

m (2.14)

und Eigenvektoren in erster Näherung durch

∣∣∣Ψ(1)
n

〉
=
∑
n′

cn′Ψ
(0)
n′ −

∑
m

Ψ(0)
m

〈
Ψ

(0)
m

∣∣∣H1 − E(1)
n

∣∣∣Ψ(0)
n

〉
E

(0)
n − E(0)

m

, E(0)
n 6= E(0)

m , E
(0)
n′ 6= E(0)

n .

Höhere Ordnungen lassen sich durch Koeffizientenvergleich der Potenzreihen vollkommen
analog gewinnen. Mit diesem Grundgerüst lässt sich nun auch die Auswirkung einer explizit
gegebenen Störung errechnen.

2.5.1. Störungen mit trigonometrischen Polynomen

Betrachtet wird eine operatorwertige Funktion A(t) = sin(t)A1 + cos(t)A2, t ∈ R+.
Für diesen Fall wird im Folgenden die Störungstheorie angewandt, um zu analysieren wie
sich die Erwartungswerte der einzelnen Matrizen unter einer solchen Störung verhalten - der
Einfachheit halber sind die Eigenwerte der Matrizen A1 und A2 nicht entartet, sodass ein ein-
deutiges Orthonormalsystem dieser Matrizen existiert. Stellt man die Eigenwertfunktionen
von zwei zufällig generierten, dreidimensionalen, hermiteschen Matrizen mit einer solchen
Störung dar, so erkennt man deutlich eine 2π-Periodizität, jedoch sonst relativ chaotisches
Verhalten:

7In unendlichen Dimensionen können jedoch bestimmte (pathologische) unbeschränkte Operatoren kon-
struiert werden, deren Potenzreihe in keinem Punkt konvergiert.
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-π - π

2

π

2
π

t

-π

- π

2

π

2

π

σp(A(t))

Abbildung 2.1.: Eigenwertkurven von A(t) für zwei zufällig generierte dreidimensionale
Observablen

Formt man die Eigenwertgleichung nach den Eigenwertfunktionen um, so erhält man

A(t) |ψ(t)〉 = α(t) |ψ(t)〉 =⇒ α(t) = 〈ψ(t) |A(t) |ψ(t)〉 .

Die Erwartungswerttupel können auch im Formalismus der Störungstheorie angegeben wer-
den. Man erhält diese durch den Erwartungswert der ungestörten Operatoren im Skalarpro-
dukt der Eigenzustände der gestörten Operatoren (vgl. (3.1)):

a(t) = 〈ψ(t) |A |ψ(t)〉 =

〈ψ(t) |A1 |ψ(t)〉
〈ψ(t) |A2 |ψ(t)〉

 .

Möchte man nun Aussagen über die genaue Form und die Eigenschaften dieser Erwartungs-
werttupel treffen, so muss die Störungstheorie herangezogen werden, damit die Eigenvekto-
ren der gestörten Operatoren sukzessive errechnet werden können:

1. Ordnung

Die Eigenwertgleichung (2.12) lässt sich nun, wenn man alle Terme der Ordnung O(ξ2)
vernachlässigt und die Kurznotationen

∣∣ψ(0)(t)
〉

:= |ψ(t)〉 und
∣∣ψ(1)(t)

〉
:= |ψ′(t)〉 einführt,

folgendermaßen aufstellen:

A′(t) |ψ(t)〉+A(t) |ψ′(t)〉 = α′(t) |ψ(t)〉+ α(t) |ψ′(t)〉 , (2.15)

wobei der Strich die Ableitung nach dem Parameter t bezeichnet, also

A′(t) = − sin(t)A1 + cos(t)A2 und α′(t) = 〈ψ(t) |A′(t) |ψ(t)〉 =

− sin(t)

cos(t)

 · a(t).

Durch umformen erhält man die äquivalente Darstellung

15



2. Mathematische Grundlagen

(A(t)− α(t)) |ψ′(t)〉 = (−A′(t) + α′(t)) |ψ(t)〉
⇐⇒ 〈ψ(t) |A′(t)− α′(t) |ψ(t)〉 = 0. (2.16)

Ferner bezeichnet |ψµ(t)〉 den Eigenvektor des µ-ten Astes, so gilt für ν 6= µ:

〈
ψν(t)

∣∣A(t)− αµ(t)
∣∣ψ′µ(t)

〉
=
〈
ψν(t)

∣∣−A′(t) + α′µ(t)
∣∣ψµ(t)

〉〈
ψν(t)

∣∣A(t)
∣∣ψ′µ(t)

〉
−
〈
ψν(t)

∣∣αµ(t)
∣∣ψ′µ(t)

〉
= −〈ψν(t) |A′(t) |ψµ(t)〉+

〈
ψν(t)

∣∣α′µ(t)
∣∣ψµ(t)

〉
(αν(t)− αµ(t))

〈
ψν
∣∣ψ′µ〉 = −〈ψν(t) |A′(t) |ψµ(t)〉+ α′µ(t) 〈ψν(t) |ψµ(t)〉︸ ︷︷ ︸

=δνµ=0

.

Wodurch die Matrixelemente
〈
ψν(t)

∣∣ψ′µ(t)
〉

eine explizite Form erhalten

(αν(t)− αµ(t))
〈
ψν(t)

∣∣ψ′µ(t)
〉

= −〈ψν(t) |A′(t) |ψµ(t)〉〈
ψν(t)

∣∣ψ′µ(t)
〉

= − 1

αν(t)− αµ(t)
〈ψν(t) |A′(t) |ψµ(t)〉 . (2.17)

Weiterhin gibt es eine Eichfreiheit in der Wahl der Eigenvektoren, da die Phase des Gesamt-
systems nicht festgelegt ist. Betrachtet man beispielsweise

Re
(〈
ψµ(t)

∣∣ψ′µ(t)
〉)

=
d

dt
〈ψµ(t) |ψµ(t)〉 = 0,

so führt der Eigenvektor
∣∣∣ψ̃µ(t)

〉
:= eiβµ(t) |ψµ(t)〉 zu physikalisch identischen Ergebnissen,

wenn βµ(t) eine reellwertige Funktion ist. Diese Eichfreiheit wird durch eine Konvention
aufgelöst:

〈
ψ̃µ(t)

∣∣∣ ψ̃′µ(t)
〉

= Im
(
iβ′µ(t) 〈ψµ(t) |ψµ(t)〉+

〈
ψµ(t)

∣∣ψ′µ(t)
〉)

= β′µ(t) + Im
(〈
ψµ(t)

∣∣ψ′µ(t)
〉)
.

βµ(t) wird nun gerade so gewählt, dass o.B.d.A. Im
(〈
ψµ(t)

∣∣ψ′µ(t)
〉)

= 0 gilt.

Wendet man von links
∑
ν 6=µ
|ψν(t)〉 auf Gleichung (2.17) an und verwendet die Vollständigkeitskeits-

relation 1 =
∑
ν 6=µ
|ψν(t)〉 〈ψν(t)|, so ergibt sich

∣∣ψ′µ(t)
〉

=
∑
ν 6=µ

− 1

αν(t)− αµ(t)
〈ψν(t) |A′(t) |ψµ(t)〉 |ψν(t)〉 ,

wodurch es möglich ist die Dynamik der Erwartungswerttupel zu analysieren. Sei dazu

ȧµ,k(t) =
d

dt
〈ψµ(t) |Ak |ψµ(t)〉 = 2 Re

(〈
ψµ(t)

∣∣Ak ∣∣ψ′µ(t)
〉)

=
∑
ν 6=µ

− 2

αν(t)− αµ(t)
Re (〈ψµ(t) |Ak |ψν(t)〉 〈ψν(t) |A′ |ψµ(t)〉)

für die Werte k ∈ {1, 2}. Verwendet man schließlich die Identität

sin(t) 〈ψν(t) |A2 |ψµ(t)〉+ cos(t) 〈ψν(t) |A1 |ψµ(t)〉 = 0,
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die aus (2.16) folgt, so lässt sich feststellen, dass

ȧµ,1(t) =
∑
ν 6=µ

− 2

αν(t)− αµ(t)
Re(− sin(t)

=|〈ψµ(t) |A1 |ψν(t)〉|2︷ ︸︸ ︷
〈ψµ(t) |A1 |ψν(t)〉 〈ψν(t) |A1 |ψµ(t)〉

+ cos(t) 〈ψµ(t) |A1 |ψν(t)〉 〈ψν(t) |A2 |ψµ(t)〉)

=
∑
ν 6=µ

− 2

αν(t)− αµ(t)
(− sin(t)| 〈ψµ(t) |A1 |ψν(t)〉 |2

− sin(t) 〈ψµ(t) |A2 |ψν(t)〉 〈ψν(t) |A2 |ψµ(t)〉︸ ︷︷ ︸
=|〈ψµ(t) |A2 |ψν(t)〉|2

)

=
∑
ν 6=µ

2 sin(t)

αν(t)− αµ(t)

(
| 〈ψµ(t) |A1 |ψν(t)〉 |2 + | 〈ψµ(t) |A2 |ψν(t)〉 |2

)
gilt und analog für ȧµ,2(t). Insgesamt folgt somit in erster Ordnung:

ȧµ,1(t) = sin(t)∆µ(t) und ȧµ,2(t) = − cos(t)∆µ(t)

mit ∆µ(t) =
∑
ν

2

αµ(t)− αν(t)

(
| 〈ψµ(t) |A1 |ψν(t)〉 |2 + | 〈ψµ(t) |A2 |ψν(t)〉 |2

)
.

Nimmt man dieselben Matrizen, die zu Abbildung 2.5.1 gehören und plottet die resultieren-
den Erwartungswerttupel zweidimensional, so erhält man:

-6 -4 -2 2
<A1>

-2

2

4

<A2>

Abbildung 2.2.: Erwartungswerttupel von A(t) für zwei 3-dim. hermitesche Matrizen

Man erkennt direkt warum die Definition der Erwartungswerttupel herangezogen wurde, da
dieses Diagramm dieselben Informationen trägt wie Abbildung 2.5.1, jedoch in einer weni-
ger chaotischen Form. Wählt man nun eine beliebige Steigung und zeichnet alle Geraden
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2. Mathematische Grundlagen

mit dieser Steigung ein, die Berührpunkte an den Erwartungswerttupeln haben, so wer-
den es immer drei sein. Diese drei Tagenten sind dann die Eigenvektoren zu den jeweiligen
drei Eigenwerten aus Abbildung 2.5.1 für einen bestimmten Wert des Parameters. Diese
Beobachtung lässt sich in beliebige Dimensionen fortführen. Für zwei vierdimensionale her-
mitesche Matrizen sehen die Erwartungswerttupel mit rot eingezeichneten Tangenten für
eine beliebige Steigung beispielsweise so aus:

-1.0 -0.5 0.5 1.0
<A1>

-1.0

-0.5

0.5

1.0

<A2>

Abbildung 2.3.: Erwartungswerttupel von A(t) für zwei 4-dim. hermitesche Matrizen

Die soeben errechneten Werte für ȧµ(t) beschreiben dabei die Bewegung dieser Tangenten.
Es ist sofort klar, dass diese Funktionen glatt sind und weiterhin zeigen Computersimula-
tionen, dass sich die einzelnen Tangenten nicht schneiden. In höheren Dimensionen ist diese
Aussage auch nicht mehr trivial, allein die zunächst unstetig wirkenden

”
Spitzen“sehen auf

den ersten Blick aus, als würden sie von Entartungen herrühren, jedoch werden die Kurven
in ihrer Nähe stetig durch die Tangenten durchlaufen.
Möchte man daher genauere Aussagen über die Dynamik der Tangenten, insbesondere im In-
neren dieser Strukturen mit den unstetig wirkenden Ecken treffen, so wird die Störungstheorie
in zweiter Ordnung herangezogen.

2. Ordnung

Vernachlässigt man nun alle Terme der Ordnung O(ξ3), so erhält man

(A(t)− α(t)) |ψ′′(t)〉+ (A′(t)− α′(t)) |ψ′(t)〉 − α′′(t) |ψ(t)〉 = 0. (2.18)

Löst man dieses nun nach dem |ψ′′(t)〉-Term auf und sei wieder |ψµ(t)〉 der Eigenvektor des
µ-ten Astes, so gilt

(A(t)− αµ(t))
∣∣ψ′′µ(t)

〉
= −(A′(t)− α′µ(t))

∣∣ψ′µ(t)
〉

+ α′′µ(t) |ψµ(t)〉
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und nach Multiplikation von links mit 〈ψ′ν(t)| ist für µ 6= ν

〈
ψν(t)

∣∣A(t)− αµ(t)
∣∣ψ′′µ(t)

〉︸ ︷︷ ︸
= i)

= −
〈
ψν(t)

∣∣A′(t)− α′µ(t)
∣∣ψ′µ(t)

〉︸ ︷︷ ︸
= ii)

+
〈
ψν(t)

∣∣α′′µ(t)
∣∣ψµ(t)

〉︸ ︷︷ ︸
=α′′µ(t)〈ψν(t) |ψµ(t)〉=0

.

Betrachtet man die beiden Seiten dieser Gleichung getrennt und benutzt die Linearität des
Skalarproduktes, so ist

i) =
〈
ψν(t)

∣∣A(t)
∣∣ψ′′µ(t)

〉
−
〈
ψν(t)

∣∣αµ(t)
∣∣ψ′′µ(t)

〉
= (αν(t)− αµ(t))

〈
ψν(t)

∣∣ψ′′µ(t)
〉

ii) =
〈
ψν(t)

∣∣A′(t) ∣∣ψ′µ(t)
〉
− α′µ(t)

〈
ψν(t)

∣∣ψ′µ(t)
〉

= (α′ν(t)− α′µ(t))
〈
ψν(t)

∣∣ψ′µ(t)
〉
.

Insgesamt gilt damit

(αν(t)− αµ(t))
〈
ψν(t)

∣∣ψ′′µ(t)
〉

= (α′ν(t)− α′µ(t))
〈
ψν(t)

∣∣ψ′µ(t)
〉
.

Benutzt man nun noch (2.17) um die Matrixelemente in ii) weiter zu vereinfachen, so folgt

〈
ψν(t)

∣∣ψ′′µ(t)
〉

= −
α′ν(t)− α′µ(t)

αν(t)− αµ(t)

〈
ψν(t)

∣∣ψ′µ(t)
〉

=
α′ν(t)− α′µ(t)

(αν(t)− αµ(t))2
〈ψν(t) |A′(t) |ψµ(t)〉 .

Nutzt man wieder die Vollständigkeitsrelation 1 =
∑
ν
|ψν(t)〉 〈ψν(t)|, dann gilt

∣∣ψ′′µ(t)
〉

=
∑
µ6=ν

α′ν(t)− α′µ(t)

(αν(t)− αµ(t))2
〈ψν(t) |A′(t) |ψµ(t)〉 |ψν(t)〉 .

Insbesondere ist damit also

äµ,k(t) =
d

dt

〈
ψµ(t)

∣∣Ak ∣∣ψ′µ(t)
〉

= 2 Re
(〈
ψµ(t)

∣∣Ak ∣∣ψ′′µ(t)
〉)

= 2
∑
ν 6=µ

α′ν(t)− α′µ(t)

(αν(t)− αµ(t))2
Re(〈ψν(t) |A′(t) |ψµ(t)〉 〈ψµ(t) |Ak |ψν(t)〉)

= 2
∑
ν 6=µ

α′ν(t)− α′µ(t)

(αν(t)− αµ(t))2
Re(− sin(t) 〈ψν(t) |A1(t) |ψµ(t)〉 〈ψµ(t) |Ak |ψν(t)〉

+ cos(t) 〈ψν(t) |A2(t) |ψµ(t)〉 〈ψµ(t) |Ak |ψν(t)〉).

Im Folgenden am Beispiel von k = 1 gezeigt:

äµ,1(t) = 2
∑
ν 6=µ

α′ν(t)− α′µ(t)

(αν(t)− αµ(t))2
Re(− sin(t)

=|〈ψµ(t) |A1 |ψν(t)〉|2︷ ︸︸ ︷
〈ψν(t) |A1(t) |ψµ(t)〉 〈ψµ(t) |A1 |ψν(t)〉

+ cos(t) 〈ψµ(t) |A1 |ψν(t)〉︸ ︷︷ ︸
=− sin(t)〈ψµ(t) |A2(t) |ψν(t)〉

〈ψν(t) |A2(t) |ψµ(t)〉)

= −2 sin(t)
∑
ν 6=µ

α′ν(t)− α′µ(t)

(αν(t)− αµ(t))2

(
| 〈ψµ(t) |A1 |ψν(t)〉 |2 + | 〈ψµ(t) |A2 |ψν(t)〉 |2

)
=: − sin(t)∆̃µ(t).
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Es ergibt sich für k = 2 auf analoge Weise

äµ,2(t) = cos(t)∆̃µ(t) mit ∆̃µ(t) = ∆µ(t)
α′ν(t)− α′µ(t)

αν(t)− αµ(t)
.

Es zeigt sich auch in der zweiten Ableitung eine 2π-Periodizität und die Glattheit der Funk-
tion. Diese Funktionen beschreiben nun die

”
Beschleunigung“ der Eigenvektoren. Die Null-

stellen entsprechen damit u.a. den angesprochenen Spitzen, in denen sich die Durchlaufge-
schwindigkeit der Eigenvektoren Null annähert.
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3. Konstruktion und Eigenschaften einer
verallgemeinerten Wignerfunktion

Um eine graphische Analyse der Wignerfunktion gewährleisten zu können, werden von nun
an endlich dimensionale Hilberträume betrachtet. Genauer der Hilbertraum H = (Cn, 〈., .〉)
mit dem Standard-Skalarprodukt

〈·, ·〉 : Cn × Cn −→ C, 〈a, b〉 :=

n∑
k=0

akbk.

Ferner werden die Observablen durch hermitesche Matrizen dargestellt und einige funktio-
nalanalytische Besonderheiten, wie sie in der Einführung bereits erwähnt wurden, können
abgeschwächt betrachtet werden.

3.1. Historischer Hintergrund: Weyl-Quantisierung

Die Wignerfunktion in ihrer ersten Form wurde in der Theorie der Weyl-Quantisierung, die
1928 von Hermann Weyl ins Leben gerufen wurde, definiert. Die Weyl-Quantisierung war
ein Versuch den Formalismus der Quantenmechanik durch Korrespondenzprinzipien auf den
Phasenraum der analytischen Mechanik zu projezieren1.
Sei dafür Γ der Phasenraum, der aufgespannt wird von (q1, . . . , q3n ; p1, . . . , p3n) =: (~q, ~p)
und f eine Funktion auf diesem. So war die Idee Weyls einen hermiteschen Operator Φ = Φ†

auf f(~q, ~p) wie folgt umkehrbar abzubilden: Hier ist diese Weyl-Transformation im Fall
für zweidimensionale Phasenraumfunktionen in der Version für Orts- und Impulsoperator
angegeben

ΦQ,P (f) : =
1

(2π)2

∫
Γ×R2

fΦ(q, p) ρ eia(Q−q)+ib(P−p) dp dq da db

fΦ(q, p) : = 2

∞∫
−∞

e−2ipy〈q + y|ΦQ,P (f)|q − y〉 dy.

Eugene Wigner verwendete solch eine Formulierung 1932 in der statistsichen Physik, um
thermodynamische Gasmodelle mit N Atomen und Quantenkorrekturen zu analysieren. (vgl.
[Wig32])
Natürlich ist eine solche Phasenraumformulierung der Quantenmechanik ein legitimer Ver-
such um etwaige Verständnisprobleme und scheinbare Paradoxien (z.B. Unschärfe, Ver-
schränkung, Spin) auf ein klassisches Analogon abzubilden. Jedoch stellt einen die unter-
schiedliche Struktur von H und Γ im Allgemeinen vor große Probleme. Die Operatoren in
einem Hilbertraum vertauschen in der Regel nicht und auch die Dimensionen der Räume
stimmen meist nicht überein. So ist a priori nicht klar, welche Eigenschaften eine Phasen-
raumfunktion erfüllen muss. Betrachtet man ein freies quantenmechanisches Teilchen und

1Weyl benutzte die Gruppentheorie, um Aussagen über die Quantenkinematik zu treffen und entwickelte
dabei das Grundgerüst dieser Quantisierung (vgl. [Wey28][§44, p. 196 ff.]).
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3. Konstruktion und Eigenschaften einer verallgemeinerten Wignerfunktion

verlangt von der Phasenraumfunktion einmal stetig differenzierbar zu sein, so sind der Hil-
bertraum H = L2(R3) und der Raum C1(Γ) ∼= C1(R6) nicht isomorph. Für andere Phasen-
raumfunktionenräume gilt natürlich ein analoges Argument.
Eine Wignerfunktion eines Zustandes ist definiert, als die Weyl-Transformation des zu-
gehörigen Dichteoperators. Diese Funktionen erfüllen alle Axiome einer Wahrscheinlichkeits-
dichte, bis auf die Positivität, wie es bereits in der Einleitung erwähnt wurde.
Da also die Phasenraumquantisierung oft nicht verwertbare Resultate liefert, wäre anzu-
nehmen, dass auch die Wignerfunktion in der modernen Physik an Bedeutung verloren
hat. Dem ist aber nicht so, da vorallem in der Quantenoptik und der Festkörperphysik die
Wignerfunktion als approximatives Hilfsmittel verwendet wird um den Aufbau unbekannter
Systeme besser zu verstehen. Die wohl wichtigste Eigenschaft liegt in der korrekten Dar-
stellung von Marginalverteilungen einer Variablen, wenn also die jeweils anderen Variablen
ausintegriert werden. Ist Wρ(a1, a2) eine Wignerfunktion, so sind die Marginalverteilungen

∞∫
−∞

Wρ(a1, a2) da1 = 〈a2|ρ|a2〉 = 〈ρ〉a2 und

∞∫
−∞

Wρ(a1, a2) da2 = 〈a1|ρ|a1〉 = 〈ρ〉a1

die exakten Wahrscheinlichkeiten der jeweiligen Variablen, nur in beiden Variablen gleich-
zeitig ist dies nicht der Fall. Weiterhin ist die Gesamtwahrscheinlichkeit erhalten

∞∫
−∞

da1

∞∫
−∞

da2 Wρ(a1, a2) = Tr(ρ) = 1.

Im Folgenden wird dieser historische Gedanke abstrahiert, sodass die resultierende Pseudo-
wahrscheinlichkeitsdichte nichts mehr mit der Weyl-Quantisierung zu tun hat. Der Name

”
Wignerfunktion“ wird jedoch beibehalten, da das Ergebniss die Arbeiten Wigners verall-

gemeinert, obwohl die Herangehensweisen komplett unterschiedlich sind.

Die klassische Wignerfunktion lässt sich drei-

Abbildung 3.1.: Wignerfunktion des harmoni-
schen Oszillators für n = 4

dimensional darstellen, wenn man zum Bei-
spiel den eindimensionalen harmonischen Os-
zillator betrachtet. Die Variablen Ort und
Impuls sind dann als x und y Komponenten
aufgetragen - der Wert der Wignerfunktion
als z-Komponente. So wie die Energienive-
aus des Oszillators besitzt auch die Wigner-
funktion eine

”
Quantenzahl“ n. Für n = 4

hat die Wignerfunktion beispielsweise fol-
gende Form:
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3.2. Die Konstruktion einer verallgemeinerten Wignerfunktion

3.2. Die Konstruktion einer verallgemeinerten
Wignerfunktion

In Anlehnung an das euklidische und das komplexe Standardskalarprodukt werden folgende
Kurznotationen eingeführt:

(A1, ..., An)T =: A,

n∑
α=1

ξαAα =: ξ ·A und

n∑
α=1

ξαaα =: 〈ξ,a〉 für komplexe Zahlen ξα.

Als gegeben werden die projektionswertigen Observablen (hermitesche Matrizen)A1, ..., An ∈
R(Cn) und der Zustand ρ ∈ S(Cn) vorausgesetzt. Gesucht ist nun eine gemeinsame Pseu-
dowahrscheinlichkeitsverteilung Wρ(a) für ξ ·A mit ξ = (ξ1, ..., ξn)T ∈ Cn. Die Erwartungs-
werttupel der mit ξ gestörten Operatoren A errechnen sich durch

{
a = 〈ϕ|A|ϕ〉 ∈ Rn

∣∣ ∃ ϕ, ξ : ξ ·A|ϕ〉 = λ|ϕ〉
}
, (3.1)

wie es bereits im letzten Kapitel gezeigt wurde. Die Menge der Erwartungswerttupel ist
eine endliche Teilmenge des Rn und beschränkt, da die Eigenwerte diskret sind und nach
Multiplikation mit (beschränktem) ξ nicht über alle Grenzen wachsen können. Zur späteren
Visualisierung in zwei Dimensionen wird die Störung durch R2 3 ξ = (sin(t), cos(t))T für
t ∈ [0,∞) beschrieben2, so wie es im letzten Kapitel bereits störungstheoretisch analysiert
wurde.
Zunächst jedoch zu der Idee einer Wahscheinlichkeitsdichte: Betrachtet man eine Zufallsva-
riable X und existiert eine integrierbare Funktion f : R −→ [0,∞), sodass

P(a ≤ x ≤ b) =

b∫
a

f(x)dx

für alle möglichen Werte a und b gilt, so nennt man f(x) die Wahrscheinlichkeitsdichtefunk-

tion zur Verteilung von X. Als Normierungsbedingung gilt weiterhin
∞∫
−∞

f(x) dx = 1, da die

Wahrscheinlichkeit, dass ein beliebiger Wert angenommen wird genau Eins sein muss. Auch
in höheren Dimensionen lässt sich dieses Konzept konstruieren: Die Wahrscheinlichkeit, dass
X in einer Menge A liegt ist dann

P(X ∈ A) =

∫
A

dx f(x), dx = dx1 · · · dxn

mit f : Rn −→ [0,∞)×n und Borelmengen A ∈ B(Rn).
Mithilfe einer Wahrscheinlichkeitsdichte f(x) einer Zufallsvariable X lassen sich weiterhin
Erwartungswerte berechnen. Diese sind definiert als

E(X) =

∫
A

dx xf(x) und allgemeiner E(g(X)) =

∫
A

dx f(x)g(x). (3.2)

In der Quantenmechanik ist nun der Erwartungswert eines Operators A angewandt auf einen
Zustand ρ gegeben durch Eρ(A) = Tr (ρA), sodass sich (3.2) umschreiben lässt zu

2Die spezielle Wahl dieser Störung wird in dem Paper [CS85] motiviert.
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3. Konstruktion und Eigenschaften einer verallgemeinerten Wignerfunktion

Tr (ρ g(ξ,A)) =

∫
da f(a) g(ξ,a). (3.3)

So wie man den Lösungsraum partieller Differentialgleichungen von Funktionen auf Distribu-
tionen erweitert hat, um eine größere Anzahl an Lösungen zu erhalten (oder Lösungsfolgen,
die in speziellen Topologien gegen Lösungen konvergieren), so wird die Wignerfunktion ganz
konkret auf eine Distribution erweitert, um immer ein Objekt f zu finden, dass (3.3) für
beliebige Operatoren erfüllt. Anschaulich bedeutet das: Für die Wahrscheinlichkeitsdichte
f(x) lässt man nun, in Analogie zur Integraldarstellung von Distributionen (vgl. (2.2)), auch
Distributionen zu - die Distribution, die (3.3) erfüllt wird fortfolgend als Wρ notiert und als
Wignerfunktion des Zustandes ρ und der Observablen A bezeichnet. Dass ein solches Ob-
jekt immer existiert wurde in der Einführung der Distributionentheorie bereits erwähnt und
selbst an den Punkten eines womöglich nichtleeren singulären Trägers, an denen eine reine
Integraldarstellung scheitern wird, ist die Möglichkeit gegeben ein Folge von Testfunktionen
zu finden, die im Grenzfall gegen eine solche Distribution konvergiert.
Es stellt sich also nun die Frage, wie man auf eine explizite und eindeutige Form von
Wρ kommt, da ja noch eine Freiheit in der Wahl von g liegt. Wählt man g jedoch ge-
schickt, so lassen sich stärkere Aussagen über Wρ treffen. Sei dazu g(X) = e−iX , bzw.
g(X,Y ) = e−i〈X,Y 〉, dann vereinfacht sich die Formel für Erwartungswerte mithilfe der
Fourier-Laplace-Transformation von Wρ zu

Eρ(ξ ·A) = Tr
(
ρ e−i(ξ·A)

)
=

∫
da Wρ(a) e−i〈ξ,a〉 = Ŵ (ξ).

Man kann die physikalische Definition von Distributionen benutzen, sodass Wρ reellwer-
tige Argumente hat. Würde man dieses Objekt mathematisch korrekt betrachten wollen,
so müsste geschrieben werden Wρ

(
ξ 7→ e−i〈ξ,a〉

)
. Um die Fourier-Laplace-Transformation

durchführen zu können, musste der mögliche Definitionsbereich von Wρ eingeschränkt wer-
den auf den Raum der Distributionen mit kompaktem Träger Wρ ∈ E ′.
Auf der Obermenge S ′ ist die Fourier-(Laplace-)Transformation ein Automorphismus, so-
mit ist die Fourier-Laplace-Transformation eine eindeutig bestimmte Zuordnung3. Ferner
lässt sich Ŵ (ξ) schreiben als

Ŵ (ξ) = Tr
(
ρ e−iξ·A

)
=

∫
da1 · · · dan Wρ(a) e−i〈ξ,a〉. (3.4)

3.3. Der Träger der Wignerfunktion

Das Hauptaugenmerk liegt zunächst auf der Fourier-Laplace-Transformierten Wignerfunk-
tion

Ŵ : Cn → C, Ŵ (ξ) = Tr
(
ρ e−i(ξ·A)

)
. (3.5)

Ŵ ist nach (2.6) holomorph und lässt sich anders darstellen, da die Matrizen umgeschrieben
werden können zu

ξ ·A =

n∑
α=1

ξαAα =

n∑
α=1

λα(ξ)Pα(ξ),

3Durch das Integral ist die Eindeutigkeit modulo Lebesguescher Nullmengen und Addition mit Konstanten
zu verstehen.
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3.3. Der Träger der Wignerfunktion

mit Eigenprojektoren Pα(ξ) und der reellen Eigenwertfunktion λα(ξ), sodass der Exponen-
tialterm die Form

e−i(ξ·A) =

n∑
α=1

Pα(ξ) e−iλα(ξ) (3.6)

hat. Diese Operationen sind legitim, da hermitesche Matrizen auch nach Multiplikation mit
komplexen Zahlen normal sind und somit durch den Spektralsatz in Diagonalform gebracht
werden können. Außerdem zerfällt das Matrixexponential eines Projektors wieder in den
Projektor. Der Einfachheit halber wird angenommen, dass die Eigenwerte von ξ ·A nicht
entartet sind, also n verschiedene Funktionen λα existieren.
Zunächst wird gezeigt, dass diese Distribution ihren Träger innerhalb der JNR der Matrizen
Aα hat.

Satz 3.1. Ŵ ist konstruiert als die Fourier-Laplace-Transformierte einer Distribution Wρ ∈
E ′(Rn). Ferner ist Wρ eine Distribution mit Träger in dem gemeinsamen numerischen Wer-
tebereich R = {(Tr ρA1, ..,Tr ρAn) : ρ ∈ S(H)}. Es gilt also Wρ ∈ E ′(R).

Beweis. Nach 2.3 ist R konvex. Und da aus der Hermitezität der Observablen Tr(ρAi) ∈ R
folgt, ist R ⊆ Rn. Weiterhin ist R kompakt, weil R das Bild einer kompakten Menge unter
einer stetigen Abbildung ist. R ist als kartesisches Produkt kompakter Mengen (vgl. Satz
von Hausdorff-Toeplitz) kompakt.

Ferner ist Ŵ holomorph auf Cn, da Fourier-Laplace-Transformationen nach (2.6) immer ho-
lomorph sind. Folglich fehlt nun noch eine Abschätzung der Form (2.8). Diese wird in zwei
Schritten gezeigt:

Abschätzung erster Teil:

Teilt man ξ in seinen Real- und Imaginärteil auf, so lässt sich Ŵ schreiben als

Ŵ (ξ) = Ŵ (ν + iη) = Tr
(
ρ e−iν·A+η·A) mit ν, η ∈ Rn.

Der Exponentialterm kann nun abgeschätzt werden, indem man ihn in die sogenannte
Trotter-Form bringt

∥∥e−iν·A+η·A∥∥ =

∥∥∥∥ lim
k→∞

(
e−iν·A/k eη·A/k

)k∥∥∥∥
≤ lim
k→∞

∥∥∥∥∥
(
e−iν·A/k︸ ︷︷ ︸

unitär

eη·A/k

)∥∥∥∥∥
k

≤ lim
k→∞

∥∥∥e−ν·A/k∥∥∥k︸ ︷︷ ︸
=1

∥∥∥eη·A/k∥∥∥k

≤ lim
k→∞

∥∥∥eη·A/k∥∥∥k ≤ lim
k→∞

(
eµ(η·A/k)

)k
= lim
k→∞

(
eµ(η·A)/k

)k
≤ e‖η·A‖ = eλmax(η·A)

wobei λmax(η ·A) der betragsmäßig größte Eigenwert von η ·A ist und µ(A) die logarith-
mische Matrixnorm4. Außerdem gilt

HR(η) = sup
x∈R
〈x,η〉 = sup

ρ∈S(Cn)

Tr(ρ η ·A) = λmax(η ·A).

4Für jede Matrix X ∈ Kn×n ist
∥∥eX∥∥ ≤ eµ(X) und µ(X) ≤ ‖X‖. Die Definition findet sich im Anhang

A.1.
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3. Konstruktion und Eigenschaften einer verallgemeinerten Wignerfunktion

Das letzte Gleichheitszeichen ist gerechtfertigt, da η · A eine Summe von Operatoren ist,
die insbesondere normal sind. Die Operatornorm eines normalen Operators stimmt mit dem
Spektralradius und dem betragsmäßig größten Eigenwert überein. Damit folgt zunächst

|Ŵ (ξ)| = |Ŵ (ν + iη)| = |Tr
(
ρ e−iν·A+η·A) |

≤ ‖ρ‖
∥∥e−iξ·A∥∥ ≤ eHR(Im(ξ)).

Die Spur konnte abgeschätzt werden, da dieser Term die Form eines Frobenius-Skalarproduktes
hatte und dieses ist durch das Produkt der Normen der Argumente beschränkt5.

Abschätzung zweiter Teil:

Des Weiteren kann die Integralschreibweise von Ŵ abgeschätzt werden: Innerhalb des Inte-
grals steht die Distribution mit kompaktem Träger Wρ und der komplexe Exponentialterm.
Da eine temperierte Distribution u ∈ S ′(X) ⊂ E ′(X) abgeschätzt werden kann durch die
Halbnormfamilie pα,β(·) ihres Argumentes (vgl. [Wer11][Satz VIII.5.4, p. 430]), gilt

∃ d ∈ N, C > 0 : |u(φ)| ≤ C pα,β(φ) = C sup
x∈X
|xαDβφ(x)|.

Die genaue Definition der Halbnormfamilie, die den Schwartz-Raum zu einem lokalkonvexen
Raum macht, findet sich im Anhang A.1. Da eine Schwartzfunktion (oder Funktion mit
komp. Träger) φ ∈ S schneller fällt als jedes Polynom, erfüllt jede Schwartzfunktion eine
polynomiale Abschätzung der Form

∃ d̃ ∈ Z, C̃ > 0 : |φ(x)| ≤ C̃
(

1 + ‖x‖2
)d̃/2

,

so wie es auch in [DJ69, Ch. 28, p. 134] erläutert wird. Da aber die Multiplikation mit xα

und beliebige Ableitungen Polynome invariant lassen, folgt daraus auch eine Abschätzung
der Fourier-Laplace-Transformation mit (3.4):

|Ŵ (ξ)| ≤ C pα,β

(
e−i〈ξ,a〉

)

= C sup
ξ∈Cn

|ξαDβe−i〈ξ,a〉| ≤ C sup
ξ∈Cn

∣∣ξαDβC̃
(

1 + ‖ξ‖2
)d̃/2 ∣∣

≤ C ′
(

1 + ‖ξ‖2
)d′/2

für geeignete C ′, d′ ∈ N.

Diese Operationen sind legitim, da die alle glatten Funktionen mit kompaktem Träger außer-
halb ihres Trägers identisch verschwinden. Man findet also immer, auch wenn die Funktion
innerhalb ihres Trägers exponentielles Wachstum zeigt, ein Polynom, dass eine obere Schran-
ke an die Funktion stellt. Kombiniert man nun beide Abschätzungen, so folgt für ein d̃ ∈ Z
und ein C̃ > 0

|Ŵ (ξ)| =
√
|Ŵ (ξ)|2 ≤

√
C̃
(

1 + ‖ξ‖2
)d̃
· eHR(Im(ξ))

≤
√
C̃︸︷︷︸

=:C

(
1 + ‖ξ‖2

)d̃/2
·
√
eHR(Im(ξ))︸ ︷︷ ︸
≤eHR(Im(ξ))

≤ C(1 + |ξ|)NeHR(Im(ξ)) für N = d̃/2 ∈ N.
5vgl. Anhang A.1.
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3.4. Die Singularitäten der Wignerfunktion

Somit gilt insgesamt:

|Ŵ (ξ)| ≤ C(1 + |ξ|)NeHR(Im(ξ)).

Nach dem Satz von Parley-Wiener-Schwartz ist der Träger von Wρ enthalten in R.

Außerhalb der JNR ist die Wignerfunktion also identisch Null. Es stellt sich somit die Frage
was im Inneren passiert und ob die Wignerfunktion möglicherweise auch dort in großen Be-
reichen verschwindet. Mithilfe weiterer Abschätzungen der Form (2.9) lassen sich auch Aus-
sagen über die Größe und die Lage des singulären Trägers treffen. Von diesen Abschätzungen
wird an dieser Stelle jedoch abgesehen, da weitere Informationen über Singularitäten in den
nächsten Kapiteln durch andere Methoden gewonnen werden. Unter anderem folgende Ana-
lyse:

3.4. Die Singularitäten der Wignerfunktion

Die Rücktransformation (2.7) gibt eine explizite Form der Distribution an

Ŵ ρ(a) = Wρ(−a) = (2π)−n
̂̂
W ρ = (2π)−n

∫
dξ e−i〈ξ,a〉 Ŵ (ξ),

also insgesamt

Wρ(a) = (2π)−n
∫
dξ1 · · · dξn ei〈ξ,a〉 Ŵ (ξ1, ..., ξn), a ∈ Rn. (3.7)

Mithilfe von (3.6) kann die äquivalente Darstellung

Wρ(a) = (2π)−n
∑
α

∫
dξ1 · · · dξn Tr(ρ Pα(ξ)) ei〈ξ,a〉−iλα(ξ) (3.8)

benutzt werden, um so die Methode der stationären Phase für oszillierende Integrale zu
verwenden.

3.4.1. Die Methode der stationären Phase

Diese Theorie beschäftigt sich mit asymptotischen Integralausdrücken der Form

∫
X

g eiωfdx1 · · · dxn

für glatte Funktionen f, g ∈ E (X) mit Im(f) ≥ 0 im Grenzfall ω → +∞. Dabei ist f
eine Phasenfunktion, wie zum Beispiel f(x) = eix. Wie in [Hör90][VII 7.8] gezeigt wird,
konvergiert solch ein Integral, wenn der Gradient von ωf nicht verschwindet, oder anders
gesagt erhalten solche oszillierenden Integrale ihren führenden Beitrag an den Stellen an
denen

∇(ωf) = 0

27



3. Konstruktion und Eigenschaften einer verallgemeinerten Wignerfunktion

erfüllt ist. Wendet man diesen Formalismus nun auf die Wignerfunktion an, so wird klar,
dass die führenden Beiträge von (3.8) genau solche sind mit

∇ξ(〈ξ,a〉 − λα(ξ)) = 0⇐⇒ a−∇ξλα(ξ) = 0

⇐⇒ a = ∇ξλα(ξ) ∈ Rn.

An diesen Stellen ist also eine Definition als reguläre Distribution formal nicht möglich, da
es keine lokal integrierbare Funktion gibt, sodass das Integral über das Produkt aus Funk-
tion und Distribution existiert. Der Gradient der Eigenwertfunktionen ergibt jedoch gerade
die Erwartungswerttupel, damit scheint die Wignerfunktion nicht definierte (unendlich hohe
Werte) an den Punkten zu haben, die zum Beispiel in Grafik 2.5.1 eingezeichnet wurden.
Dieses Problem wird im Folgenden dadurch umgangen, dass jegliche Wignerfunktionen zu
einer

”
echten“ Funktion, durch Faltung mit einer Gaußkurve, geglättet werden. Wenn diese

Darstellung nicht erfolgsversprechend ist, wird eine Funktionenfolge verwendet, die gegen
die Distribution konvergiert. Näheres zu diesem Sachverhalt wird im Kapitel über die Vi-
sualisierung der Wignerfunktion erläutert.
Um oszillierende Integrale mathematisch exakt beschreiben zu können ist die Theorie der
Symbolklassen nötig, welche in dieser Abhandlung jedoch nicht weiter ausgeführt wird, da
dieses Thema eine ausgiebige Einführung von Pseudodifferentialoperatoren mit sich ziehen
würde. Für die hier benötigten Zwecke reichen die angesprochenen Ergebnisse und die Zu-
sammenfassung der Konvergenz oszillierender Integrale vollkommen aus und werden auch
in anderen ingenieurs- und naturwissenschaftlichen Teilbereichen so verwendet.
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4. Die Wignerfunktion einiger Beispiele

Historisch betrachtet waren Orts- und Impulsoperator die ersten Argumente der Wigner-
funktion. In diesem Kapitel wird eine bestimmte Linearkobination dieser Operatoren be-
trachtet. Zunächst sei jedoch zu den einzelnen Operatoren mehr gesagt, die explizite Form
in Ortsdarstellung lautet:
Der Ortsoperator Qj : dom(Qj) −→ H, Qj |ψ〉 = xj |ψ〉 hat ein kontinuierliches Spektrum
σ(Qj) = R, wobei xj eine reellwertige Koordinatenfunktion ist. Dabei ist außerdem

dom(Qj) = {|ψ〉 ∈ H : xj |ψ〉 ∈ H ∀ xj}

der dichte Definitionsbereich von Qj , insbesondere ist die Forderung der Reellwertigkeit von
xj notwendig für die Selbstadjungiertheit von Qj .

Der Impulsoperator lautet Pj : dom(Pj) −→ H, Pj |ψ〉 = −i ∂
∂xj

|ψ〉 und auch sein

Spektrum ist ganz R. Sein Definitionsbereich

dom(Pj) = H ∩ C1(H) = {|ψ〉 ∈ H : ∃ |ψ′〉 und |ψ′〉 sind stetig }

liegt auch dicht in H. Diese beiden Operatoren vertauschen nicht; die kanonischen Kommu-
tatorrelationen lauten

[Qi, Pj ] = i δij , [Qi, Qj ] = 0 = [Pi, Pj ].

4.1. Linearkombinationen von Orts- und Impulsoperatoren

Gegeben sei der Hamiltonoperator des harmonischen Oszillators H1 = P 2 +Q2 multipliziert
mit dem Faktor 2 und der Ortsoperator H2 = Q. Das Eigenwertspektrum von H1 ist aus den
meisten Einführungen in die Quantenmechanik bekannt und lautet σ(H1) = 2n+ 1, n ∈ N.
Folgender Zusammenhang folgt durch elementare Umformungen

ξH1 + ηH2 = ξP 2 + ξ

(
Q2 + 2

η

2ξ
Q+

(
η

2ξ

)2
)
− η2

4ξ

= ξ

(
P 2 +

(
Q+

η

2ξ

)2
)
− η2

4ξ
1 =: ξH ′1 −

η2

4ξ
, ξ, η ∈ C.

Dabei besitzt der Operator H ′1 identisches Spektrum wie H1. So lautet die Eigenwertfunktion

λH1+H2(ξ, η) = ξ(2n+ 1)− η2

4ξ
, n ∈ N,

mit erwarteten Singularitäten im Bild des Gradienten. Dieser lässt sich einfach berechnen
durch
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4. Die Wignerfunktion einiger Beispiele

∇λH1+H2 =

∂ξλH1+H2

∂ηλH1+H2

 =

 η2

4ξ2
+ 2n+ 1

η

2ξ

 =:

h
q

 .

Daraus folgt der Zusammenhang h = q2 + 2n + 1 für die Erwartungswerttupel. Die Er-
wartungswerttupel sind also in Parabel-Form angeordnet und sind nicht entartet, da sich
die einzelnen Parabeln nicht schneiden. Dieses Beispiel zeigt, wie die Wignerfunktion auch
in unendlich dimensionalen Räumen (näherungsweise) entwickelt werden kann. Die graphi-
sche Darstellung dieses Falles ist jedoch nicht einfach möglich und selbst die Methoden der
linearen Algebra können nur teilweise herangezogen werden, wenn versucht wird die Diffe-
rentialoperatoren approximativ in Matrixform zu schreiben. Wie im späteren noch gezeigt
wird, werden große Datenmengen bereits bei kleinen Matrixdimensionen erreicht, sodass
dieses Beispiel zwar die Möglichkeit der Darstellung aufzeigt, sie aber in dieser Arbeit nicht
durchgeführt wird.

4.2. Die Fourier-Transformierte Wignerfunktion für Qubits

Eine genaue Einführung in die Drehimpulsalgebra folgt im nächsten Kapitel, jedoch ist
die Matrixdarstellung für Qubit-Zustände und Observablen durch C2-Matrizen anschaulich
genug um einige interessante Beobachtungen bereits jetzt festzustellen. Die Fourier-Laplace-
Transformierte Wignerfunktion lässt sich schreiben als

Ŵ (ξ) = Tr
(
ρ e−

i
2ξ·~σ

)
(2.11)

=
1

2
Tr
(
1 e−

i
2ξ·~σ

)
︸ ︷︷ ︸

=: 2ϕ̂

+
1

2

3∑
α=1

rα Tr
(
σα e

− i
2ξ·~σ

)
︸ ︷︷ ︸

=:−2i d
dξα

Tr
(
e−

i
2
ξ·~σ
)

= ϕ̂− i
3∑

α=1

rα
d

dξα
ϕ̂,

wobei ϕ̂ dem halben Erwartungswert
〈
e−

i
2ξ·~σ

〉
ρ

für ρ = 1 entspricht. Dieser lässt sich noch

vereinfachen:

2ϕ̂ =
〈
e−

i
2ξ·~σ

〉
ρ=1

= Tr
(
e−

i
2ξ·~σ

)
= Tr

(
e
− i

2

3∑
α=1

ξασα

)
= Tr

(
3∏

α=1

e−
i
2 ξασα

)
.

Die ξα, α ∈ {1, 2, 3} sind die Störparameter, an die somit auch keine Konvexitätsbedingung
gestellt wird, wie in (2.11). Wie jedoch in dem Kapitel über Störungstheorie erwähnt, wird
für die Darstellung der Wignerfunktion eine reellwertige Störung aus Sinus und Kosinus
verwendet (ξ = (sin(t), cos(t)), t ∈ R), sodass sich die Fourier-Laplace-Transformation zu
einer Fourier-Transformation vereinfacht.
Aufgrund der einfachen Struktur der Paulimatrizen in der Matrixexponentialfunktion fallen
viele Terme weg, wenn man die Spur auswertet1. Multipliziert man alle erhaltenen Matrizen
aus und führt die Abkürzung |ξ| =

√
ξ2
1 + ξ2

2 + ξ2
3 ein, so reduziert sich der Ausdruck zu

ϕ̂ =
1

2
Tr

cos
(
|ξ|
2

)
− i sin( |ξ|2 )ξ3

|ξ|
sin( |ξ|2 )(−iξ1−ξ2)

|ξ|
sin( |ξ|2 )(−iξ1+ξ2)

|ξ| cos
(
|ξ|
2

)
+

i sin( |ξ|2 )ξ3
|ξ|

 = cos

(
|ξ|
2

)
.

1Die Ergebnisse der Matrixexponentialfunktion für Paulimatrizen befinden sich im Anhang A.1.
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4.2. Die Fourier-Transformierte Wignerfunktion für Qubits

Dieser ermöglicht es nun die Fourier-Transformierte auf eine exakte Form zu bringen:

Ŵ (ξ) = ϕ̂− i
3∑

α=1

rα
d

dξα
ϕ̂ = cos

(
|ξ|
2

)
− i

3∑
α=1

rα
d

dξα
cos

(
|ξ|
2

)

= cos

(
|ξ|
2

)
+ i

3∑
α=1

rα
ξα sin

(
|ξ|
2

)
2|ξ|

= cos

(
|ξ|
2

)
+
i sin

(
|ξ|
2

)
2|ξ|

3∑
α=1

rαξα︸ ︷︷ ︸
=〈r,ξ〉

.

Dass solche Fourier-Transformationen der Schlüssel zur Analyse der Wignerfunktion sind
wird im Folgenden Kapitel erläutert. Kein Computerprogramm geht leicht mit Distribu-
tionen um, jedoch sind holomorphe Funktionen und Matrizen gut implementierbar. Aus
diesem Grund versucht man zunächst immer solche Funktionen für ein bestimmtes Problem
herzuleiten, um dann die Wignerfunktion daraus zu entwickeln und darzustellen.
Ferner erkennt man schnell, dass trigonometrische Funktionen wie Sinus und Kosinus im
Qubit-Fall nicht quadratintegrabel sind und die Fourier-Transformation nicht durchführbar
ist. Dieses Problem wird jedoch durch die Gaußglättung der Wignerfunktion umgangen, wie
es im Folgenden Kapitel Thema sein wird.
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5. Visualisierung der Wignerfunktion

Zur Visualisierung wurde Wolfram Mathematica 10.4.0.0 - Student Edition1 verwen-
det.

5.1. Computeralgorithmus

Da viele Distributionen praktisch nicht graphisch darstellbar sind, wird der Bildbereich mit

einer Gaußkurve f(ξ) = e−
ξ2

2ε gefaltet. Die Distribution wird also, anschaulich gesehen, zu
einer Funktion geglättet. Dabei ist ε ein reellwertiger Parameter und im Grenzfall lim

ε→∞
konvergiert die Gaußkurve gegen die Einsfunktion. Ferner ist die Gaußkurve der Fixpunkt
der Fourier-Transformation, der Parameter ε skaliert nur das Ergebnis.
Die Multiplikation mit einer Gaußkurve sorgt außerdem für die Integrabilität, die für die
Fourier-Transformation benötigt wird. In dem folgenden Mathematica-Code wird der Al-
gorithmus mit der Fourier-Transformierten Ŵ (ξ) initialisiert und mit solchen Gaußkurven
multipliziert. Dieser Ausdruck ist analytisch und konkret durch Funktionen und Matrizen
implementierbar; auch die Multiplikation mit einer Gaußkurve f(ξ) funktioniert analytisch
und ausreichend schnell.
Fourier-(Rück)-Transformationen stellen durch ihre Komplexität jedoch ein Hindernis dar,
wenn es um handhabbare Laufzeiten geht, denn selbst die schnelle Fourier-Transformation
(FFT =

”
Fast Fourier Transform“) skaliert mit einer Laufzeit von O(N log(N)) für N Dis-

kretisierungspunkte (vgl. [OW12][p. 19]), was bei einer Anzahl von mehreren hundert Punk-
ten bereits zu signifikant höheren Laufzeiten führen kann. Die Fourier-Transformation wird
zudem in zwei Richtungen durchgeführt, daher verdoppelt sich die Laufzeit2. Die Inverse
schnelle Fourier-Transformation IFFT ist analog aufgebaut, mit praktisch gleicher Laufzeit.
Die Laufzeit der FFT ist jedoch eine untere Schranke für die Laufzeit des Programms, wie in
der späteren Analyse gezeigt wird. Die internen Speichervorgänge in den Zwischenschritten,
das Initialisieren der Arrays und viele weitere Arbeitsschritte skalieren oft linear in N, wenn
nicht sogar quadratisch.
Die Diskretisierung ist in diesem Fall notwendig, da analytische Fourier-Transformationen
von Computern nicht immer berechenbar sind3. Wenn der Computer also für jeden der dis-
kreten Raumpunkte die FFT durchgeführt hat, so wird dieser in einem Array gespeichert.
Schlussendlich wird eine Liste mit 512× 512 Einträgen erstellt, jeweils mit den Koordinaten
der Raumgitterpunkte und dem Wert der FFT an dieser Stelle. Mathematica ist dann in
der Lage diese Punkte zu plotten, sodass die Rohdaten folgende Form haben:

1ff. als Mathematica bezeichnet.
2Die Laufzeit des implementierten Codes wurde noch durch weitere Mittel versucht zu senken. Diese zu

erläutern würde jedoch eine zu tiefe Einführung in den Grund-Kernel von Mathematica erfordern.
3Es stellt sich als Effizient heraus, eine Diskretisierung in Potenzen von zwei zu verwenden, also N = 2m -

die Bilder, die in dieser Arbeit zu finden sind, wurden mit 512× 512-Punkten diskretisiert.
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5.1. Computeralgorithmus

Abbildung 5.1.: Rohdaten einer Wignerfunktion zweier zufällig generierter Observablen

Diese Daten werden dann als 3D-Objekt gespeichert und mit dem Bildbearbeitungs- und
3D-Programm Blender bearbeitet und mit Schatten versehen, um einzelne Details besser
erkennen zu können. Es gehen dabei keinerlei Informationen der Bilddatei verloren, die
physikalisch relevant sind. Die gerenderte Wignerfunktion sieht dann so aus:

Abbildung 5.2.: Gerenderte Rohdaten von zuvor

Da solche Wignerfunktionen auch für Observablen dargestellt werden können die keine Mes-
sung repräsentieren, wird künftig auf ein Koordinatensystem, so wie es angedeutet wird,
verzichtet und somit wird es auch keine Achsenbeschriftung geben. Bis auf die Drehimpuls-
operatoren folgen keine Wignerfunktionen mehr, die sich auf ein konkretes physikalisches
Problem beziehen und damit keine physikalischen Variablen als Erwartungswerte besitzen,
deren konkreter Zahlenwert eine Bedeutung trüge. Durch die gegebene Einführung sollte
jegliche Information, die eine solche Wignerfunktion zeigt - auch ohne Achsenbeschriftung -
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5. Visualisierung der Wignerfunktion

verständlich sein, da es viel mehr um die qualitative Form der Verteilung geht.

5.2. Laufzeitanalyse

Eine Zusammenfassung des Grundcodes findet sich im Anhang A.2. Im Folgenden werden
die einzelnen Schritte des Codes auf ihre Laufzeit untersucht und im Hinblick auf verschie-
dene Diskretisierungen analysiert. Sieht man von den Grunddefinitionen ab und initialisiert
diese, so verbleiben für jede Wignerfunktion 8 Schritte (bzw. 12 Schritte, wenn die Erwar-
tungswerttupel mit eingezeichnet werden sollen). Diese 8 Schritte lauten:

• maxx: Errechnet den größten Eigenwert der gewählten Matrizen. Es gibt also ein Maß
für die Mindestgröße der JNR an und somit die Breite der Diskretisierung.

• ψ: Konstruiert den kleinsten normierten Eigenvektor der ersten Matrix.

• rho: Ist der Ketbra (das dyadische Produkt) von ψ. Es ist damit der Zustand, auf die
sich die Wignerfunktion bezieht.

• setFourier[N, x]: Initialisiert die Fourier-Transformation. Es diskretisiert auf einem
Quadrat mit Kantenlänge x ein Gitter mit N2-Punkten und packt diese in ein Array.
Als Kantenlänge x wird dann 2 maxx verwendet.

• wh[eps, rho]: Ist die Implementierung von Ŵ . In dieser Arbeit wird eps = 0.001 ver-
wendet.

• Fou2 ist dann die eigentliche Fourier-Transformation des Arrays von wh in Bezug auf
setFourier.

• wwpoints kombiniert dann die Gitterpunkte des Arrays mit dem jeweiligen Wert der
Fourier-Transformation aus dem Array Fou2.

• pic erstellt einen ListPlot von wwpoints, um die Wignerfunktion dreidimensional dar-
zustellen.

Die einzigen Algorithmen, die nennenswerte Laufzeiten hervorrufen, sind setFourier, wh,
Fou2 und pic. Alle anderen liegen in einem Bereich von 8 · 10−6 Sekunden, oder weniger,
da es sich nur um das interne Speichern und Initialisieren einfacher Daten handelt. Sie sind
weiterhin unabhängig von der Diskretisierung N . pic ist ein Befehl, der zwar eine Laufzeit
von nur tausendstel Sekunden beansprucht, jedoch ist die Darstellungen eines ListPlots mit
1024 Punkten und mehr auf handelsüblichen Rechnern oft nicht möglich.
Die verbleibenden drei Befehle werden nun genauer untersucht: Sie skalieren nicht linear
in N. Jedoch ist auch die (gewünschte) Laufzeit von O(N log(N)) für die FFT nicht er-
reicht. Alle drei Schritte skalieren ungefähr quadratisch in N, wie die folgenden Graphen mit
quadratischen Fitkurven zeigen.
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setFourier[N] in sek.

Abbildung 5.3.: Laufzeit des setFourier-Befehls in abh. von N
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wh[0.001,rho] in sek.

Abbildung 5.4.: Laufzeit des wh-Befehls in abh. von N
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5. Visualisierung der Wignerfunktion
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Fou2[whs] in sek.

Abbildung 5.5.: Laufzeit des Fou2-Befehls in abh. von N

5.3. Fast kommutierende Matrizen

Die gesamte Betrachtung bezog sich bis jetzt auf nicht kommutierende Matrizen, da diesen
kein gemeinsames System aus Eigenvektoren zugeordnet werden kann, dass beide simultan
diagonalisiert. Natürlich funktioniert der gezeigte Algorithmus auch für kommutierende Ma-
trizen und das Ergebnis stimmt mit den Erwartungen überein: Man erhält separate δ-Peaks
(geglättet also Gaußkurven) an den jeweiligen Erwartungswerttupeln, wie zum Beispiel hier
gezeigt für die Matrizen

A =


−1 0 0

0 1 0

0 0 0

 , B =


1 0 0

0 0 0

0 0 −1

 , σp(A,B) = {1, 0,−1}

mit einer trivialen Wignerfunktion

Abbildung 5.6.: Wignerfunktion zweier kommutierender Matrizen

die Erwartungswerttupel liegen auf beiden Achsen, jeweils bei 1, 0 und -1. Eine interessante
Beobachtung macht man jedoch, wenn man fast kommutierende Matrizen betrachtet. Das
sind Matrix-Tupel der Form
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5.4. Die Drehimpulsalgebra und Qubits

[A,B] = 0, B′ := B + εC =⇒ [A,B′] = [A,B] + [A, ε C] = ε [A,C] , A,B,C ∈ R(Cn),

also kommutierende Matrizen mit einer kleinen Störung, sodass der Kommutator beliebig
klein gewählt werden kann. Im Folgenden dargestellt für die Werte ε = 0.01, 0.05, 0.1 und
0.2:

(a) ε = 0.01 (b) ε = 0.05

(c) ε = 0.1 (d) ε = 0.2

Abbildung 5.7.: Wignerfunktion fast-kommutierender Matrizen

Man erkennt sehr anschaulich, wie sich die inneren Strukturen ausbauen, wenn die Störung
zunimmt. Der Störparameter hebt die Entartung des Systems langsam auf, dadurch entste-
hen diese nicht-trivialen Erwartungswerttupel.

5.4. Die Drehimpulsalgebra und Qubits

Die Drehimpulsalgbra beschäftigt sich mit dem Drehimpulsoperator L = Q × P , seinen
Komponenten Lx, Ly, Lz, dem Operatorquadrat L2 = L2

x + L2
y + L2

z und den jeweiligen
Kommutatorrelationen. Die einzelnen Komponenten des Drehimpulsoperators vertauschen
nicht, es gilt [Lx, Ly] = −iLz modulo zyklischer Permutation der Menge {x, y, z}. Ziel
dieses Unterkapitels ist es also nun eine Wignerfunktion für zwei Drehimpulskomponenten
zu entwickeln. Zeichnet man die z-Richtung aus, so definiert man die Leiteroperatoren:

J± = Jx ± Jy = −i
(
y
∂

∂z
− z ∂

∂y

)
∓ i
(
z
∂

∂x
− x ∂

∂z

)
mit J†− = J+

=⇒ Jx =
1

2
(J+ + J−) und Jy =

−i
2

(J+ − J−).
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5. Visualisierung der Wignerfunktion

J2 kommutiert mit Jz, sodass eine gemeinsame Basis aus Eigenvektoren gewählt werden
kann. Der Darstellungsraum der irreduziblen Darstellungen der Drehimpulsalgebra SU(2l+
1) ist C2l+1, sodass {|j,m〉}j,m∈N ∈ C2l+1 als die Menge der gemeinsamen Basiszustände
von J2 und Jz gewählt werden kann. Sie erfüllen die folgenden Eigenwertgleichungen

J2|j,m〉 = j(j + 1)|j,m〉, Jz|j,m〉 = m|j,m〉 ∀ j ∈ N/2, m ∈ {−j,−j + 1, · · · , j − 1, j},

wodurch sich die Matrixelemente der einzelnen Operatoren wie folgt berechnen lassen:

〈j,m|Jz|j′,m′〉 = m δj,j′δm,m′

〈j,m|J2|j′,m′〉 = j(j + 1) δj,j′δm,m′ .

Beispielsweise sind die beiden Matrixdarstellungen von Jz und J2 für die Quantenzahl j =
3/2 gegeben durch

Jz =


3/2 0 0 0

0 1/2 0 0

0 0 −1/2 0

0 0 0 −3/2

 , J2 =
3

4


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

Eine ähnliche, aber etwas aufwändigere Rechnung,4 liefert die Matrixelemente der Leiter-
operatoren und dadurch eine explizite Form von Jx und Jy:

〈j,m|J+|j′,m′〉 =
√

(j −m)(j +m− 1) δj,j′δm+1,m′

〈j,m|J−|j′,m′〉 =
√

(j −m+ 1)(j +m) δj,j′δm−1,m′ .

Für das Beispiel j = 3/2 also

J+ =


0
√

3 0 0

0 0 2 0

0 0 0
√

3

0 0 0 0

 = J†−

und somit für die Drehimpulskomponenten

Jx =
1

2


0
√

3 0 0
√

3 0 2 0

0 2 0
√

3

0 0
√

3 0

 , Jy =
−i
2


0

√
3 0 0

−
√

3 0 2 0

0 −2 0
√

3

0 0 −
√

3 0

 .

4siehe z.B. [Wer16][Kapitel 5] und [HW03][p. 161 ff.].
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5.4. Die Drehimpulsalgebra und Qubits

5.4.1. Die Wignerfunktion für Qubits

Betrachtet man nun den Fall eines Spin 1/2 Teilchens, so untersucht man den Fall eines
Qubits mit den möglichen Zuständen | ↑ 〉 und | ↓ 〉. Durch die Darstellung der Drehimpul-
salgebra sind die Spin-1/2 Observablen gegeben durch:

Jx =
1

2
σ1 =

 0 1/2

1/2 0

 und Jy =
1

2
σ2 =

 0 −i/2
i/2 0

 .

Die Eigenwerte beider Matrizen sind ± 1
2 mit den Eigenvektoren

| ↑1 〉 =

− 1√
2

1√
2

 , | ↓1 〉 =

 1√
2

1√
2

 und | ↑2 〉 =

 i√
2

1√
2

 , | ↓2 〉 =

 −i√2
1√
2

 .

Um zu zeigen, dass die Wignerfunktion tatsächlich die exakten Marginalien ergibt, eignet
sich der Qubit-Fall besonders gut, weil es nur zwei mögliche Messergebnisse gibt. Im Folgen-
den sind die Wignerfunktionen für die Zustände ρ1 = | ↑1 〉〈 ↑1 | und ρ2 = | ↑2 〉〈 ↑2 | gezeigt.

(a) Zustand ρ1 (b) Zustand ρ2

Abbildung 5.8.: Wignerfunktionen eines Qubits für unterschiedliche Zustände

Die Marginalverteilungen erhält man nun, wenn eine der beiden Variablen ausintegriert wird.
Bei der diskreten Fourier-Transformation die verwendet wurde entspricht das der Summe
der einzelnen diskreten Werte in einer bestimmten Richtung. Im Folgenden dargestellt durch
die Messung Jx in blau und Jy in rot5:

5Die Einteilung der Abzisse ist dabei, für alle Marginalverteilungen, durch die Diskretisierungspunkte gege-
ben und somit physikalisch nicht aussagekräftig. Die Umrechnung erfolgt durch den größten Eigenwert:
Die 512 Punkte entsprechen dem größten Eigenwert der beiden Matrix mal vier.
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(a) Zustand ρ1
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(b) Zustand ρ2

Abbildung 5.9.: Marginalverteilungen der Messungen Jx (blau) und Jy (rot)

Diese Verteilungen sind physikalisch sinnvoll, da die Messung Jx im Zustand ρ1 scharf und
Jy vollständig unbestimmt ist. Umgekehrt ist Jx im Zustand ρ2 vollständig unbestimmt,
während Jy scharf ist. Die Peaks befinden jeweils bei einem Erwartungswert von 1/2, was
man dadurch erkennt, dass die gesamte Abzisse einer Länge von 2 maxx = 2 1/2 = 1 in
positive und in negative Richtung entspricht. Der Wert N = 256 entspricht also einem
Erwartungswert von Null, N = 128 und N = 384 entsprechen damit analog 1/2. Dass es
sich hier tatsächlich um Gaußkurven handelt, die im Falle ε → 0 gegen die Dirac’sche δ-
Distribution gehen, ist noch zu zeigen. Die Fourier-Transformation wurde im vorigen Kapitel
bereits berechnet:

Ŵ (ξ) = cos

(
|ξ|
2

)
− i

3∑
α=1

rα
d

dξα
cos

(
|ξ|
2

)
.

Benutzt man nun die Rücktransformationsformel, so ist die doppelt-transformierte Wigner-
funktion im Qubit-Fall:

̂̂
W ρ(a) = (2π)3 Wρ(−a) =

∫
R3

dξ

[
cos

(
|ξ|
2

)
− i

3∑
α=1

rα
d

dξα
cos

(
|ξ|
2

)]
e−i〈ξ,a〉

=

∫
R3

dξ e−i〈ξ,a〉 cos

(
|ξ|
2

)
− i

3∑
α=1

rα

∫
R3

dξ e−i〈ξ,a〉
d

dξα
cos

(
|ξ|
2

)
.

Tauscht man nun die Variable −a 7→ a und multipliziert mit (2π)−3, so werden die Integrale

zu Fourier-Rücktransformationen. Ferner wird die fundamentale Identität ̂(Dαf(x))(t) =

(it)αf̂(t) (vgl. [Wer11][Lemma V.2.4]) benutzt; somit gilt
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Wρ(a) =
1

(2π)3

∫
R3

dξ ei〈ξ,a〉 cos

(
|ξ|
2

)
− i

(2π)3

3∑
α=1

rα

∫
R3

dξ ei〈ξ,a〉
d

dξα
cos

(
|ξ|
2

)

= F−1

(
cos

(
|ξ|
2

))
(a)− i

3∑
α=1

rα F−1

(
d

dξα
cos

(
|ξ|
2

))
(a)

= F−1

(
cos

(
|ξ|
2

))
(a)︸ ︷︷ ︸

=: I(a)

−i
3∑

α=1

rα(iaα)F−1

(
cos

(
|ξ|
2

))
(a)

= I(a) (1 + 〈r,a〉) = I(a)
(

1 + a1 〈σ1〉ρ + a2 〈σ2〉ρ + a3 〈σ3〉ρ
)
. (5.1)

Es wurde dabei verwendet, dass sich Ŵ (ξ) durch den Koeffizientenvektor r in direkte Be-
ziehung zu den Erwartungswerten der einzelnen Spin-Messungen setzen kann, durch

〈σi〉ρ = Tr(ρ σi) = Tr

 3∑
j=1

rj
2
σjσi

 =

3∑
j=1

rj
2

Tr (σjσi)

=
ri
2

Tr ( σiσi︸︷︷︸
=1 ∀i

) +

3∑
j=16=i

rj
2

Tr (σjσi︸︷︷︸
±iσk

), k 6= i, j ∈ {1, 2, 3}

=
ri
2

Tr(1)± i rj
2

Tr(σk)︸ ︷︷ ︸
=0

= ri.

Der Faktor mit dem Skalarprodukt aus r und a ist dabei auch physikalisch notwendig.
Stünde dieser dort nicht, so wären die Wignerfunktionen aller Qubits - also unabhängig
ihrer Koeffizienten in der Dichtematrix - gleich. Physikalisch relevant ist nur der Winkel
zwischen Erwartungswerttupeln und dem Koeffizientenvektor: Hat also der Qubit eine ge-
wisse Symmetrie bzgl. dieser Größe, so trägt auch die Wignerfunktion diese Symmetrie, da
sich das Skalarprodukt aus r mit der jeweiligen Variable sowohl in der Wignerfunktion, als
auch in der Fourier-Transformation findet.
Die komplette Auswertung der Qubit-Wignerfunktion reduziert sich also auf die Berechnung
von I(a). Da dieses Integral nur von dem Betrag von ξ abhängt, scheint es sinnvoll zu sein
Kugelkoordinaten zu verwenden:

ξ1 = r sin(θ) cos(φ),

ξ2 = r sin(θ) sin(φ),

ξ3 = r cos(θ).

Somit transformiert sich das Integral zu

I(a) =
1

(2π)3

∞∫
0

dr

2π∫
0

dφ

π∫
0

dθ r2 sin(θ) cos
(r

2

)
eir(a3 cos(θ)+sin(θ)(a1 cos(φ)+a2 sin(φ))).

Dieses Integral ist nun jedoch nicht trivial zu lösen, in der Tat stellt sich selbst die Konver-
genz als fragwürdig heraus. Der folgende Satz über die Fourier-Transformation sphärisch-
symmetrischer Funktionen erweißt sich als hilfreich:
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Proposition 5.1. Sei f ∈ S (X) eine radiale Funktion, sprich f(x) = f(|x|). Dann ist

Fourier-Transformierte f̂(ξ) auch eine radiale Funktion und es gilt

f̂(ξ) =

∫
Rn

f(x) e−2πi〈x,ξ〉dx =

∞∫
0

ϕ(r)
J(n−2)/2(2πr|ξ|)

(r|ξ|)(n−2)/2
rn−1 dr, (5.2)

wobei die Jn(x) die Bessel-J-Funktionen erster Gattung sind. Es wird folgende Konvention
verwendet:

Jn(x) =

∞∑
j=0

(−1)j
(x2 )2j+n

j!(j + n)!
, n > −1. (5.3)

Ist n keine natürliche Zahl, so wird für n! = Γ(n+ 1) = n Γ(n) die Gammafunktion benutzt.

Beweis. Der Beweis wird in [Pin02][Ch. 2, Prop. 2.6.8, p. 157] gezeigt.

Man erkennt schnell die unterschiedliche Konvention der Fourier-Parameter. Dieser Um-
stand wird durch das Multiplizieren mit einer Eins der Form −2π

−2π umgangen.

Wendet man diesen Satz auf f(r̃) = cos(r̃), mit r̃ = r
2 an, so gilt:

I(a) = (2π)−3

∫
Rn

cos

(
|ξ|
2

)
e−2πi〈ξ, a

−2π 〉dξ
(5.2)
= (2π)−3

∞∫
0

f (r̃)
J 1

2
(2πr̃

∣∣ a
−2π

∣∣)
(r̃
∣∣ a
−2π

∣∣) 1
2

r̃2dr̃

= (2π)−3
√

2π

∞∫
0

cos
(r

2

) J 1
2
( r2 |a|)√
r
2 |a|

r2

4

dr

2
= (2π)−3

√
2π

√
2

8

∞∫
0

cos
(r

2

) J 1
2
( r2 |a|)√
r|a|

r2 dr.

Die Berechnung der Bessel-J Funktion erfolgt separat:

J 1
2

(r
2
|a|
)

=

∞∑
j=0

(−1)j

(
r
2 |a|

2

)2j+ 1
2

j! (j + 1
2 )!

=

∞∑
j=0

(−1)j
( r2 |a|)

2j+ 1
2

22j
√

2 j! Γ(j + 1
2 + 1)

√
r
2 |a|√
r
2 |a|

=
1√

2 r2 |a|

∞∑
j=0

(−1)j
( r2 |a|)

2j+1

22j j! (j + 1
2 )(j − 1

2 ) · · · 3
2 ·

1
2 Γ

(
1
2

) ; Γ

(
1

2

)
=
√
π

=
2√
πr|a|

∞∑
j=0

(−1)j
( r2 |a|)

2j+1

22j (j(j − 1)(j − 2) · · · 1)

((
j +

1

2

)(
j − 1

2

)
· · · 3

2

)
︸ ︷︷ ︸

22j Faktoren

=
2√
πr|a|

∞∑
j=0

(−1)j
( r2 |a|)

2j+1

(2j + 1)!
= 2

sin
(
r
2 |a|

)√
πr|a|

.

Dieses ergibt eingesetzt in die obere Gleichung:
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I(a) =
2√
π|a|

(2π)−3
√

2π

√
2

8

∞∫
0

cos
(r

2

)
sin
(r

2
|a|
)
r dr

= (2π)−3 1

2|a|

∞∫
0

∂

∂|a|

(
−2 cos

(r
2

)
cos
(r

2
|a|
))

dr.

Dieses Integral divergiert. Es wird die folgende Eins verwendet lim
ε′→∞

e−
r2

αε′ = 1 ∀α, r ∈ R,

um das Integral in eine Folge konvergenter Integrale zu schreiben, die gegen ein divergentes
Integral konvergieren.

Iε′(a) := (2π)−3 1

2|a|
∂

∂|a|

∞∫
0

(
−2 cos

(r
2

)
cos
(r

2
|a|
)
e−

r2

4ε′
)
dr, ε′ > 0

= (2π)−3 1

2|a|
∂

∂|a|
√
πε′(1 + e|a|ε

′
)
(
−e− ε

′
4 (|a|+1)2

)

= (2π)−3 1

2|a|
1

2

√
πε′

3
2 e−

ε′
4 (|a|+1)2(1 + |a|+ (|a| − 1) e|a|ε

′
), ε := ε′−1

= (2π)−3

√
π

4|a|
1√
ε3

(1 + |a|+ (|a| − 1) e
|a|
ε ) e−

(|a|+1)2

4ε .

Die δ-Distribution besitzt mehrere eindimensionale Repräsentationen durch Funktionenfol-
gen6. Die folgende erweißt sich als hilfreich:

δ(x) = lim
ε→+0

1

2
√
πε
e−

x2

4ε .

Um diese Funktionenfolge nun auch dreidimensional, also für einen Vektor x, korrekt be-
schreiben zu können wird folgende Rechnung angewendet, die durch den Betrag des Argu-
mentvektors |x| = r vereinfacht werden kann7:

δ(x) = δ(x)δ(y)δ(z) = lim
ε→+0

1

(2
√
πε)3

e−
x2

4ε e−
y2

4ε e−
z2

4ε = lim
ε→+0

1

8
√

(πε)3
e−

r2

4ε .

Damit lässt sich der Grenzwert ausführen zu

lim
ε′→∞

Iε′(a) = lim
ε→0
Iε(a) = lim

ε→0

1

4π|a|
1

8
√
π3ε3

[
(|a|+ 1)e−

(|a|+1)2

4ε + (|a| − 1)e−
(4|a|−(|a|+1)2)

4ε

]

= lim
ε→0

1

4π|a|
1

8
√
π3ε3

[
(|a|+ 1)e−

(|a|+1)2

4ε + (|a| − 1)e−
(|a|−1)2

4ε

]

=
1

4π|a|

(|a|+ 1)δ(|a|+ 1)︸ ︷︷ ︸
=0, weil |a|+16=0

+(|a| − 1)δ(|a| − 1)

 .
6 siehe http://functions.wolfram.com/GeneralizedFunctions/DiracDelta/09/ (Stand: 28.07.2016).
7 Dass es sich bei dieser Funktion tatsächlich um eine Folge handelt, die in Kugelkoordinaten gegen die
δ-Distribution konvergiert, wird im Anhang A.1 gezeigt.
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5. Visualisierung der Wignerfunktion

Insgesamt folgt damit für die Wignerfunktion:

Wρ(a) =
(|a| − 1)δ(|a| − 1)

4π|a|

(
1 + a1 〈σ1〉ρ + a2 〈σ2〉ρ + a3 〈σ3〉ρ

)
. (5.4)

Dieser Term mag zunächst verwundern, da es so aussieht, als wäre die Funktion identisch
Null. Plottet man jedoch die Funktionenfolge, die gegen diese Funktion (Distribution) kon-
vergiert in Abhängigkeit des Betrages |a|, so erkennt man schnell die Form einer Gaußkurve,
die gegen eine δ-Distribution konvergiert, die jedoch - je nach Richtung in der man sich der
Singularität nähert - unterschiedliche Vorzeichen besitzt. Hier gezeigt für ε = 10−3:

-2 -1 1 2
|a|

-500

500

Wρ(|a|)

Abbildung 5.10.: Qubit-Wignerfunktion in Abhängigkeit des Argumentbetrages

Der distributionelle Charakter der Wignerfunktion wird an dieser Stelle besonders deutlich.
Nichtsdestotrotz erhält man die korrekten Marginalverteilungen aus dieser Distribution:

5.4.2. Die Marginalverteilungen im Qubit-Fall

Um die Marginalien, beispielsweise für die Variable a1, aus diesen Funktionen zu errechnen
gibt es zwei Wege: Entweder man setzt bereits in (5.1) die jeweils anderen Variablen gleich
Null und führt das Integral aus, oder man integriert sie zukzessive aus (5.4) aus. Im Folgen-
den wird der erste Weg gezeigt:

Werden die Variablen a2 = a3 = 0 gesetzt und die Vorfaktoren einer eindimensionalen
Fourier-Transformation gewählt, so folgt bereits in (5.1) die Formel:

Pρ(a1) =
(1 + a1r1)

(2π)

∫
R

dξ1 e
iξ1a1 cos

(
ξ1
2

)
. (5.5)

Die Fourier-Transformation ist im distributionellen Sinn für den Kosinus defininiert durch
die Identität

∫
R

cos(at)e±iωtdt = 2π

(
δ(ω + a) + δ(ω − a)

2

)
.

Damit lässt sich die Marginalverteilung schreiben als
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Pρ(a1) =
(1 + a1r1)

(2π)

∫
R

dξ1 e
iξ1a1 cos

(
ξ1
2

)

=
1

2
(1 + a1 〈σ1〉)

(
δ

(
a1 +

1

2

)
+ δ

(
a1 −

1

2

))
, (5.6)

welches die korrekte Form der Verteilung ist. Die Rechnung kann analog für a2 und a3

durchgeführt werden. Die zweite Variante wird an dieser Stelle Stelle nicht gezeigt, weil die
Integrationen nicht analytisch lösbar sind.

5.4.3. Systeme mit beliebig hohem Drehimpuls

Der zuvor besprochene Fall lässt sich nun auf den Fall j ≥ 1 anwenden. Die Wignerfunktion
liefert in jeder Richtung die exakten Marginalverteilungen - nur ist das bei hohen Drehimpul-
sen nicht mehr trivial zu erkennen. Aus diesem Grund werden die Wignerfunktionen sowohl
für einen bosonischen, als auch für einen fermionischen Fall aufgezeigt und die Marginalien
für beide Beispiele angegeben.

Bosonischer Teil

Für j = 1 betrachtet man ein bosonisches System. Die irreduziblen Darstellungen der j = 1-
Drehimpulsalgebra sind durch C3×3 Matrizen gegeben. Die Wignerfunktion und die Margi-
nalverteilungen haben folgende Form:

Abbildung 5.11.: Wignerfunktion für j = 1
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Abbildung 5.12.: Marginalien für j = 1

Man erkennt drei mögliche Erwartungswerte durch die rote Messung Jy und einen Erwar-
tungswert durch die blaue Messung Jx, was physikalisch korrekt ist, da die Wignerfunktion
im Eigenzustand von Jx präpariert wurde. Die Marginalien sind im Grenzfall ε→ 0 wieder,
analog zum Qubit-Fall, Dirac’sche δ-Distributionen und integriert man mit Mathematica

numerisch über diese Kurven, so erhält man den Flächeninhalt Eins mit Abweichungen un-
terhalb von einem Prozent. Die Peaks befinden sich bei den Werten ±1 und 0, die Abzisse
entspricht dem Intervall [−2, 2].

Fermionischer Teil

Die gleiche Analyse wird nun noch für j = 9
2 , also ein Fermion, durchgeführt. Die dar-

stellenden Matrizen sind 2j + 1 = 10 dimensional und enthalten dementsprechend viele
Erwartungswerte. Diese erkennt man auch (wenn auch an den Seiten sehr schwach) durch
die rote Messung. Die blaue Messung ist dagegen wieder scharf:

Abbildung 5.13.: Wignerfunktion für j = 9/2
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Abbildung 5.14.: Marginalien für j = 9/2

Es lassen sich natürlich auch Linearkombinationen dieser Messungen durchführen. In der
folgenden Draufsicht sind die Messungen der vorigen Marginale eingezeichnet (blau und rot)
und zudem eine grüne Messung 1√

2
(Jx + Jy), die eine Superposition der beiden darstellt.

Die Marginale dieser Messung werden dazu angegeben:

Abbildung 5.15.: Draufsicht der j = 9/2 Wignerfunktion mit Messrichtungen

47



5. Visualisierung der Wignerfunktion

200 400 600 800 1000

0.02

0.04

0.06

0.08

Abbildung 5.16.: Marginalverteilung der Superpositionsmessung

Je höher die Drehimpulsquantenzahl j jedoch gesetzt wird, desto höher muss die Auflösung
der FFT sein, um einzelne Details zu erkennen. Im Vergleich der Qubit-Wignerfunktion mit
der Spin-9/2-Wignerfunktion erkennt man diesen Sachverhalt besonders gut: Die Margina-
lien erscheinen, in einzelnen Punkten, für den letzteren Fall nicht einmal mehr glatt. Der
nächsthöhere fermionsiche Spin, j = 11/2, würde mit 512 × 512 Diskretisierungspunkten
zwar ähnlich aussehen, jedoch würden die Marginalien in den äußeren Bereichen sowohl viel
zu klein (im Vergleich zu den Hauptpeaks) sein, als auch

”
kantig“, wie man es in folgendem

Bildausschnitt erkennen kann.

Abbildung 5.17.: Seitenausschnitt der j = 11/2-Marginalien nach Jy-Messung

Die gezeigte Wignerfunktion stellt also das Ende der Darstellbarkeit dieses Algorithmusses
dar, die mithilfe nicht professioneller Rechner errechnet werden und die der Anschauung
halber nützlich sind. Für rechenstarke Computer-Cluster ist die Darstellungsgrenze natürlich
beliebig hoch zu setzen.
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6. Zusammenfassung

Durch die Annahme, dass die Wignerfunktion auch eine Distribution sein kann, haben
sich neue Möglichkeiten aufgetan, die verschiedene Analysemethoden nach sich gezogen
haben. Eine verallgemeinerung der Wignerfunktion ist jedoch nicht neu, denn viele an-
dere Wissenschaftler haben bereits Artikel zu dieser Fragestellung veröffentlicht. In den
Papern [CS85], [SC05], [LP97] und [SW93] ist eine ähnliche Herangehensweise geschildert,
jedoch werden den Wignerfunktionen in diesen Arbeiten nie Eigenschaften von Distribu-
tionen zugewiesen. Im ersten dieser Paper wird auch der Fall einer Wignerfunktion für ein
Spin-1/2 Teilchen berechnet. Die Rechnung erfolgt insofern analog, als dass der selbe Ansatz
für die Wignerfunktion gewählt wurde und die Berechnung über die Fourier-Transformation
erfolgte, jedoch wurden nur zwei Freiheitsgrade zugelassen. In dieser Arbeit wurde dieses
Problem mit einer Dimension mehr gelöst. Über beide Wege errechnen sich die gleichen
Marginalverteilungen, wie sie für die Qubits bekannt sind.
Die Tatsache, dass jegliche Distributionen, insofern sie nicht gänzlich singulär sind, durch
Gaußglättung zu Funktionen werden, ermöglicht es analytische Ausdrücke für Wignerfunk-
tionen in Bezug auf alle möglichen hermiteschen Matrizen, ob sie eine physikalische Messung
darstellen oder nicht, zu errechnen. Auch die endliche Anzahl der betrachteten Observablen,
die man an einem Zustand betrachet, kann beliebig hoch sein. Nur lassen sich die Ergeb-
nisse im Falle von drei und mehr Observablen nicht mehr in Form von Graphen darstellen.
In [SC05] wird sogar eine Methode angesprochen, mithilfe derer man unendlich viele Ope-
ratoren betrachten kann.
Insgesamt lässt sich also zusammenfassen: Auch wenn die Quantenmechanik die gleichzeitige
Messung mancher Aspekte eines Systems verbietet und somit als statistische Theorie bekannt
ist, so erhält man trotzdem oftmals exakte Ergebisse, wenn andere Aspekte unbeobachtet
bleiben. Die Wignerfunktion zeigt diesen Zusammenhang der Unschärfe sehr anschaulich
und die bloße Tatsache, dass sie sich für beliebige Systeme und beliebige Messungen kon-
struieren lässt, hebt einmal mehr hervor wie erfolgsversprechend die Quantentheorie ist und
dass sie Zurecht einen der Grundpfeiler der modernen Physik bildet.
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A. Anhang

A.1. Topologien und Formeln

Der Raum der glatten Funktionen E

Auf dem Raum der glatten Funktionen C∞(X) erzeugen die Halbnormen

pK,m(ϕ) = sup
x∈K,|α|≤m

|Dαϕ(x)|, m ∈ N, α ∈ Nn

für K ⊆ X kompakt, eine lokalkonvexe Topologie. Zusammen mit dieser Topologie wird der
Raum als E (X) notiert. (siehe [Jan71][§11, p. 49])

Der Schwartz-Raum S

Der Schwartzraum S (X) wird durch die Halbnormfamilie

pα,β(ϕ) = sup
x∈X
|xαDβϕ(x)|, α ∈ Nn,

oder vollkommen analog mit einem Polynom Q(x)

pα,Q(ϕ) = sup
x∈X
|Q(x)(Dαϕ)(x)|,

zu einem lokalkonvexen, metrisierbaren Raum - einem Fréchet-Raum. (siehe [Hör90][Ch. 7,
p. 160])

Der Raum der glatten Funktionen mit kompaktem Träger D

Durch die Topologie, die von den Halbnormen

pK,m(ϕ) = sup
x∈K,|α|≤m

|Dαϕ(x)|, m ∈ N

induziert wird, wird der Raum C∞c (X) zu D(X). (siehe [Jan71][§12, p.51])

Abschätzung von Distributionen

Betrachtet man nun die topologischen Duale dieser Räume, so ist eine Bemerkung für alle
Räume analog: Eine stetige Linearform auf jedem dieser drei Testfunktionenräume, kann
betragsweise durch die Halbnorm des Argumentes und einer positiven Konstante abgeschätzt
werden. Ist zum Beispiel u ∈ S ′(X), so gilt

|u(ϕ)| ≤ C pα,β(ϕ), mit C > 0.

Beweis. Der Beweis findet sich für die einzelnen Räume in [Jan71][§14, Satz 14.1, p. 60]
und [Jan71] [§37, Satz 37.7, p. 174]
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A.1. Topologien und Formeln

Die Topologie der Dualräume lässt sich (je nach nötigem Konvergenzgrad, der in der Theorie
partieller Differentialgleichungen wichtig wird) durch die starke Topologie, oder die Topologie
der schwach-*-Konvergenz definieren. Diese werden im Folgenden charakterisiert.

Operator- und Dualraumtopologien

Sei H ein normierter Raum und A ∈ L(H) ein linearer, beschränkter Operator. So kann
man H und H′ mit verschiedenen Topologien austatten, die durch (Halb-)Normen erzeugt
werden. Jede der folgenden Topologien besitzt eine lokalkonvexe Struktur:

• Die Normtopologie wird von der Operatornorm ‖A‖ = sup
x∈H,‖x‖=1

‖Ax‖ aufH induziert.

• Die Halbnormen px(A) := ‖Ax‖ induzieren die starke Operatortopologie auf H′.

• Die schwache Operatortopolgie wird von den Halbnormen px,y(A) := |〈Ax, y〉| induziert
und topologisiert H.

• Die schwach-*-Topologie wird durch das Halbnormsystem
px1,··· ,xn(f) = max(|f(x1)|, · · · , |f(xn)|) definiert und macht H′ zu einem lokalkonve-
xen Raum.

Der Raum der Distributionen D ′

Eine Distribution u auf X ist eine lineare Abbildung von D(X), sodass für jedes kompakte
K ⊂ X Konstanten C und m existieren mit

|u(φ)| ≤ C pK,m(ϕ) = C sup
x∈K,|α|≤m

|Dαϕ(x)| ∀ φ ∈ D(K).

Die kleinste Konstante m, für die diese Gleichung für alle kompakten K gilt, heißt Ordnung
der Distribution.

Der Raum der Distributionen mit kompaktem Träger E ′

Der Raum der Distributionen mit kompaktem Träger (also die Menge der Distributionen,
deren Träger ein kompakter Raum ist) ist nach [Hör90][Theorem 2.3.1 p. 44] isomorph zu
E ′(X).

Die logarithmische Norm

Die logarithmische Norm einer quadratischen Matrix ist keine Norm im strengen Sinn. Sei
A ∈ Kn×n und ‖·‖ die induzierte Matrixnorm, so ist

µ(A) := lim
h→+0

‖1 + hA‖ − 1

h

die logarithmische Norm von A.

Frobenius-Skalarprodukt

Das Frobenius-Skalarprodukt zweier quadratischer, komplexwertiger Matrizen A und B ist

〈A,B〉 = Tr
(
A†B

)
.

Es gilt die fundamentale Abschätzung

|〈A,B〉| ≤ ‖A‖ ‖B‖.
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A. Anhang

Das Matrixexponential der Paulimatrizen

Um unnötigen Rechenaufwand zu vermeiden ist es hilfreich die Matrixexponentialfunktion
der Paulimatrizen direkt auszuwerten. Diese lauten:

i) ex·σ1 =

cosh(x) sinh(x)

sinh(x) cosh(x)


ii) ex·σ2 =

 cosh(x) −i sinh(x)

i sinh(x) cosh(x)


iii) ex·σ3 =

ex 0

0 e−x


Die δ-Distribution in Kugelkoordinaten

Um zu zeigen, dass eine Folge von Funktionen fn(x) gegen die δ-Distribution konvergiert,
müssen zwei Identitäten erfüllt sein:

i) lim
n→∞

∫
RN

fn(x)dx = 1 und ii) lim
n→∞

∫
RN

fn(x− x0)ϕ(x− x0)dx = ϕ(x0) ∀ϕ ∈ E (RN )

Da sich jede glatte Funktion durch ihre Taylorreihe approximieren lässt, ist der zweite Teil
äquivalent dazu, dass das Integral über die Funktionenfolge mit jedem Polynom verschwin-
det, wenn als Entwicklungsstelle x0 = 0 gewählt wird. Wählt man die Kugelkoordinaten
(N = 3) und die Funktionenfolge, wie sie im Qubit-Kapitel eingeführt wurde, so ergibt sich:

ii) = lim
ε→+0

2π∫
0

dφ

π∫
0

dθ

∞∫
0

dr sin(θ) r2 rk
1

8
√

(πε)3
e−

r2

4ε = lim
ε→+0

4π

8
√

(πε)3

∞∫
0

dr rk+2e−
r2

4ε

= lim
ε→+0

1

2
√
π
√
ε3

2k+2 ε
3+k
2 Γ

(
3 + k

2

)
∝ lim
ε→+0

ε
3+k
2 −

3
2 = 0 ∀k ∈ N+.

Für den Fall k = 0 ergibt sich die Frage der Normierung - sprich i). Wertet man die soeben
erhaltene Gleichung für k = 0 aus, so erhält man:

i) = lim
ε→+0

1

2
√
π
√
ε3

22 ε
3
2 Γ

(
3

2

)
= lim
ε→+0

2
√
π
√
ε3

2
√
π
√
ε3

= 1.

Es sind also beide Voraussetzungen erfüllt.
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<< �����������

������[�_] �= �����[-(� - �) / �� (� - �) / �]�

��� = �@����[#�� � �����������������] ��

�������������[���� ��������]�

��� = �������������[���[#]� �������] ��

����������[�_� ����_] �= �� = ��

δ� = �[π / ����]� �� = δ� * ������[�]�

δ� = � π / (�� * δ�)� �� = δ� * ������[�]�

������ = ���@���[ⅈ π (� - � / �) * �����[�� � - �]]�

������� = ���@���[-ⅈ π (� / � - � + � / (� �))] * �������

������� = ���@�����[������ ������� ������]�
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����[����_] �= ������� * �������[���[������ * ����]� ����������������� → {-�� -�}]�

����[�����_] �=

�������� * �������[���[������� * �����]� ����������������� → {-�� -�}]�

����[���_� �_] �= ��� = �����[�������[���]� {�}]��

����[���_] �= ����[���� �]�

��[���_] �= ��� =

���@��������-��� * #��� + #��� * ��[���������[ⅈ {#�� #�}����]] �� ��� ��� ��

��[���_� ρ_] �= ��� = ���@

��������-��� * #��� + #��� * ��[ρ����������[ⅈ {#�� #�}����]] �� ��� ��� ��

������ = �����[�� π� ���]�

������� = ���������[{���[������]� ���[������]}]�

��������[����_� ���_] �= ������[{��� = ��������� /@ ������������[��������]}�

�����[����[���������[#�]�#��#�] �� ���� ����� �]]�

��������[����_] �= �������[��������[����� #] � /@ �������� �]�

����[������_� �_] �= �����[������[#� �]] � /@ �������

���[����_� �_] �= ����������[����[��������[����]� �]]

����������������������������������������������

A.2. Mathematica-Code



�����������������������������
��������� �= ����[�]�

������ �=

��� = {{{�� �� �}� {�� �� ⅈ}� {�� -ⅈ� �}}� {{�� ⅈ� �}� {-ⅈ� �� �}� {�� �� �}}}�

������ = �� = �� * ��������������[{�� �� -�}]�

�� = {{�� �������� �������}� {�� �� �������}� {�� �� �}}�

��� = {�� + �� + ��� -�� + ⅈ �� - ⅈ �� }��

������������������������������������
{���[[�]] // ����������� ���[[�]] // ����������}



��� �������� + �������� ⅈ -�������� - ������ ⅈ

�������� - �������� ⅈ �� ������� - ������� ⅈ

-�������� + ������ ⅈ ������� + ������� ⅈ -���

�

-��� -�������� + �������� ⅈ ������ - �������� ⅈ

-�������� - �������� ⅈ �� ������� + ������� ⅈ

������ + �������� ⅈ ������� - ������� ⅈ ���


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���� = ���[���� /@ ���]�
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��[����� ���]�

�� = ����[���]�
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