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1. Einleitung

Wignerfunktionen wurden im Jahr 1932 von Eugene Wigner benutzt um Effekte der (gera-
de aufkommenden) Quantentheorie in der klassischen statistischen Physik zu untersuchen,
sie resultierten aus Hermann Weyls Phasenraumformulierung der Quantenmechanik. Weyl
selbst hatte bereits ein Jahr zuvor, unabhéingig von Wigner, eine Funktion mit den glei-
chen Eigenschaften gefunden: Eine Wignerfunktion ist eine Pseudowahrscheinlichkeitsdich-
tefunktion fiir ein quantenmechanisches System, wobei sich die Wahrscheinlichkeit auf die
Messwerte des Systems unter beliebigen Messungen bezieht. Solche Funktionen definieren
zwar keine echte Wahrscheinlichkeitsdichte, da sie nicht positiv definit sein miissen, jedoch
enthalten sie die korrekten Marginalverteilungen der einzelnen Messungen. Dass es keine
vollstandige Wahrscheinlichkeitsdichtefunktion eines quantenmechanischen Systems geben
kann, zeigt alleine die Heisenberg’sche Unschérferelation: Die gleichzeitige Kenntnis der kor-
rekten Wahrscheinlichkeitsverteilungen nicht kommutierender Messungen ist nicht méglich,
eine von beiden lisst sich jedoch immer scharf betrachten, wenn man jegliche Informati-
on der jeweils anderen Verteilung verliert. Aus historischer Sicht waren die Argumente der
Wignerfunktion auf den Ort und den Impuls beschrénkt.

Mathematisch betrachtet ist eine Wignerfunktion W, fiir einen Zustand p also eine reell-
wertige Funktion der einzelnen Messwerte - bei Orts und Impulsmessung somit Ort ¢ und
Impuls p. Bezieht man sich zunéichst auf diese beiden Variablen, so lassen sich die weiteren
Eigenschaften in Formeln angeben. Die Wignerfunktion W, (g, p) muss die korrekten Margi-
nalverteilungen enthalten und die Gesamtwahrscheinlichkeit erhalten, es muss also gelten:

/Wp(qm) dp={(qlpla), /Wp(q,p) dg = (p|p|p) und //Wp(q,p) dp dg =1

— 00 —0O0

Mehr wird im Allgemeinen nicht gefordert und insbesondere nicht die Positivitét, die fehlen
wiirde, sodass W, eine echte Wahrscheinlichkeitsdichtefunktion wére.

Auch in der modernen Physik spielen Wignerfunktio-
nen eine grofle Rolle, sei es in der Quantenoptik oder
in der Festkorperphysik - die Einsatzmoglichkeiten
bieten sich in vielen Teilbereichen heutiger Forschung.
Fiir die theoretische Physik ist es umso wichtiger ei-
ne Verallgemeinerung der Wignerfunktion auf ande-
re Observablen zu finden, um mogliche Grenzen der
Quantentheorie zu erforschen und sich nicht nur auf
diese zwei Messungen zu beschréinken. Fiir die Expe-
rimentalphysik spielt dieses nur eine untergeordnete
Rolle, da Ort und Impuls die fiir die makroskopische
Welt wichtigsten Observablen sind. Die nebenstehen-
de Grafik zeigt beispielsweise eine typische Wigner-
funktion, wie sie in der Quantenoptik Gegenstand aktueller Forschung ist. Sie beschreibt
eine optische Mode eines Nd:YAG-Laser im Vakuum (siche [SSM™14]).

Wigner Function W(q,p)

In dieser Arbeit werden die Moglichkeiten aufgezeigt, die bendtigt werden um das Grund-
geriist der Theorie Wigners, mithilfe der Distributionentheorie, auf allgemeinere Observablen
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zu erweitern. Auflerdem werden die resultierenden Wignerfunktionen fiir einige Beispiele
errechnet und dargestellt. Fiir diese Félle sind die betrachteten Operatoren auf endlich di-
mensionalen Hilbertrdumen definiert , um Eigenwertanalysen durchfithren zu kénnen, ohne
auf Probleme mit kontinuierlichen und Residualspektren im Funktionalkalkiil zu stoffen. Da
die Distributionentheorie jedoch eine Teildisziplin der Funktionalanalysis ist, wird die ma-
thematische Einfithrung zunéchst auch den unendlich dimensionalen Fall berticksichtigen.
Die Erwartungswerttupel von beliebigen Matrizen und Funktionen von Matrizen werden
genauer untersucht und ein Einblick in die Stérungstheorie gegeben.

Die endliche Dimension der Observablen wird auch zur Visualisierung bendétigt, da nur
Observablen endlicher Dimension in einem Computeralgebra-System implementiert wer-
den konnen. Diese Observablen werden dann durch hermitesche Matrizen realisiert und
die benotigten Analysemethoden, wie Eigenwertberechnung oder Fourier-Transformationen,
sind in den meisten Programmiersprachen bereits enthalten, sodass handhabbare Laufzeiten
gewahrleistet werden konnen. Die Theorie wird zunéchst fiir Operator-N-Tupel aufgestellt,
die Darstellung wird jedoch nur mit 2-Tupeln diskutiert, um die Wignerfunktion dreidimen-
sional darzustellen. Allen voran wird jedoch die Notation eingefiihrt.
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Dieses Kapitel ist eine Einfithrung in die mathematischen Grundlagen der Quantentheorie
und enthilt die Notation der wichtigsten quantenmechanischen Grundbegriffe. Des Weite-
ren werden die JNR, bestimmte Resultate der linearen Algebra und die Stérungstheorie
eingefiihrt.

2.1. Notation

Die Grundlage der Quantenmechanik bildet ein Hilbertraum (#, (-, -}). Lineare, beschrinkte
Operatoren A : H — H werden geschrieben als A € £(H) und sind insbesondere stetig. Die
Menge der selbstadjungierten Operatoren A = Af ist R(#). Die selbstadjungierten Opera-
toren werden gemeinhin als Observablen bezeichnet.

Oft ist mit der Definition der Observablen auch Projektionswertigkeit verbunden, hier wird
die Projektionswertigkeit jedoch getrennt von dieser Definition betrachtet. Der Definitions-
bereich eines Operators A ist dom(A); im Fall unbeschriinkter Operatoren ist der Definiti-
onsbereich dom(A) = H durch den Satz vom abgeschlossenen Graphen nicht moglich.

Das Spektrum eines Operators, also im physikalischen Sinn die Menge der moglichen Messwer-
te, ist definiert durch g(A) :={A € C | A\l - A & L7'(#)}, wobei 1 das Eins-Element des
Hilbertraumes ist und £~!(H) die Menge der invertierbaren, stetigen und linearen Operato-
ren auf H ist. Im Falle endlicher Dimension entspricht das Spektrum einer Matrix der Menge
ihrer Eigenwerte. Die Unterscheidung in verschiedene Arten eines Spektrums (kontinuierlich,
Residual, Punktspektrum, ...) ist in endlichen Dimensionen nicht nétig.

Elemente eines Hilbertraumes werden in der Dirac-Notation als Ket |¢)) notiert, Elemen-
te des Dualraumes als Bra (t|. Ein Operator A heifit positiv (schreibe A > 0), wenn
(W|A|Y) > 0V |[¢) € H. Des Weiteren ist die Menge der Dichteoperatoren auf H mit
S(H) :={p e T(H):p>0,Trp= 1} notiert, wobei T(H) die Menge der Spurklasseope-
ratoren bezeichnet. Zahlen wie £ sind Element des Grundkérpers K und hervorgehobene
Zahlen € aus K". In dieser Ausarbeitung gilt weiterhin i = 1.

2.2. Distributionentheorie

Die Distributionentheorie, wie sie im Folgenden beschrieben wird, ist weitestgehend an die
Notation von Lars Hérmander (vgl. [H6r90]) angelehnt.

Definition 2.1. Eine Distribution w ist ein stetiges, lineares Funktional auf dem Raum der
Testfunktionen A
u:A— C,alsou€ L(AC)=:A.

Schrankt man den Definitionsbereich X auf ein Y C X ein, so geschieht das auf dem
Distributionenraum fiir ein u € A’(X) wie folgt:

uy € A'(Y): uy(p) =u(p) mit p € AY).

Dabei kann der Raum der Testfunktionen auf offenem X C R”™ beispielsweise aus glatten
Funktionen &(X) = C*(X), glatten Funktionen mit kompaktem Triger 2(X) = C*°(X),
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oder aus Schwartzfunktionen . (X) bestehen, welche dadurch charakterisiert sind, dass sie
und alle partiellen Ableitungen schneller fallen als jedes Polynom. Formal:

Definition 2.2. Der Schwartz-Raum . (X) ist definiert als

LX) = {(,oeéa )|V a,BeNg, 3020,VmeX:sup|anBap(x)|<oo}. (2.1)
reX

Ein stetiges und lineares Funktional, also ein Element aus dem topologischen Dualraum
von . (X) heiit temperierte Distribution. Um von Stetigkeit sprechen zu kénnen wird eine
Topologie auf diesen Rdumen benétigt, diese werden durch bestimmte Halbnormfamilien
erzeugt, die im Anhang zu finden sind.

dicht
Des Weiteren gelten die Inklusionen Z(X) é (X)) C &(X) und somit fiir die Dualrdume
&'(X) C (X) C 2'(X). Dabei ist der Triger einer Distribution u € 2(X)’ definiert durch

offen
supp(u) = {33 €EX|VA C X 3pe2(A) mit u(p(x)) #0 }

Es ist erwdhnenswert, dass der Dualraum der glatten Funktionen mit kompaktem Trager
(Triger einer Funktion) der Raum der Distributionen ist, der Dualraum der glatten Funk-
tionen aber der Raum der Distributionen mit kompaktem Tréger (Tréger einer Distribution)
1stﬂ Die Distributionentheorie bietet noch eine weitere Tragerdefinition, die Aufschluss iiber
die Regularitét einer Distribution liefert: Der singuldre ngeTEI:

offen
sing supp(u) =z € X | #A C X, Af € £(A) mit u(p /f x)dzx ¥ ¢ € D(A)

Dieses ist die streng mathematische Einfithrung der Distributionentheorie. Die theoretische
Physik verwendet meist eine etwas andere (im Kern jedoch identische) Herangehensweise.
Die theoretische Physik bezeichnet als Distribution ein stetiges und lineares Objekt u, sodass
die Zuordnung

A>p— /dx u(z)p(x) € R (2.2)

eine Testfunktion auf eine reelle Zahl abbildet. Ist u(z) integrierbar auf X, so ist diese De-
finition mathematisch prézise, obwohl u auflerhalb eines Integrals moglicherweise nicht die
Struktur einer Funktion aufweifit. In der physikalischen Sichtweise ist es daher legitim wenn
eine Distribution reellwertige Argumente hat, insofern sie mit einer Testfunktion in einem
Integral steht. Oftmals wird daher auch v als distribution-erzeugende Funktion bezeichnet
und das Funktional u(-) = [ u(x) - dz als Distribution.

X

Die Konventionen gehen in diesem Bereich stark auseinander (vgl. beispielsweise [H6r90],
[Jan71] und [Werll]), was in dieser Auswertung jedoch nur eine untergeordnete Relevanz
haben wird, da Grundziige der Distributionentheorie bereits ausreichen werden. Die physi-
kalische Sichtweise ist motiviert durch sogenannte regulire Distributionen u fiir die immer
eine lokal-integrierbare Funktion f € LIOC(X ) existiert, sodass die Distribution von f erzeugt
wird in der Form

1Eine genauere Klassifikation der einzelnen topologischen Dualriume findet sich im Anhang -
2englisch: ,,singular support.
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up(p) = / dz f(2)o(z) = {f, o)1,
X

Wird also, in der mathematischen Sichtweise, eine Testfunktion als Argument einer Distribu-
tion betrachtet, so ist in der physikalischen Sichtweise das L2-Skalarprodukt aus Testfunktion
und Distribution gemeint. An dieser Stelle wird auch die Bedeutung des singuléren Trigers
wichtig, denn dieser enthélt, anschaulich gesehen, die Menge der Punkte an denen sich eine
Distribution nicht wie eine glatte Funktion verhilt und somit keine Regularitdat in diesen
Punkten aufweifit. An diesen Punkten scheitert also die Integraldarstellung der Distribution.

Betrachtet man jedoch eine beliebige Testfunktion ¢ € Z2(X), so ldsst sich diese mit der
Distribution u,(¢) = [ ¢(x)¢(x) dz identifizieren. Daraus folgt, dass ein Testfunktionen-
X

raum ein Teilraum seines topologischen Duals ist und es kann gezeigt werden, dass diese
Inklusion dicht ist (vgl. [H6r90][Th. 4.1.5, p. 89]). Somit ldsst sich jede Distribution u als
Grenzwertlﬂ einer Folge von Testfunktionen w,(x) schreiben, was noch niitzlich sein wird,
wenn eine reine Integraldarstellung weder praktisch noch zuléssig ist. Jede Distribution lasst
sich also immer darstellen als

u(p) = lim [ u,(x)p(z) dz.

n—00
X

Im Folgenden ist immer, falls nicht anders erwdhnt, der Raum der Schwartzfunktionen als
Testfunktionenraum gemeint, da die Fourier-Transformation auf diesem Raum einige starke
Eigenschaften besitzt:

Theorem 2.3. Die Fourier-Transformation .% : L'(R") — Cy(R")

F(f)(t) =: f(t) = (x) e dx, t e R" (2.3)

R™

bildet eingeschriankt auf .#(X) einen linearen Automorphismus mit Umkehrfunktion

FHf)x) = f(x)=(27)" . f(t) b= dt, x e R (2.4)

Beweis. Der Beweis befindet sich in [DJ69|[Part II, Ch. 29, p.138]. O

Man erkennt schnell, dass die obige Formel auch fiir komplexwertige Vektoren £ € C”
Sinn ergibt. Ist dieses der Fall spricht man von einer Fourier-Laplace-Transformation f +—
Z(f)(E).

Um die Wignerfunktion spéter richtig beschreiben zu kénnen, werden die Eigenschaften der
Fourier-Transformation auf temperierte Distributionen erweitert. Dieses geschieht auf dem
Schwartz-Raum durch folgende natiirliche Identifikation:

Definition 2.4. Sei u € .%/(X) eine temperierte Distribution. Dann ist die Fourier-
Transformierte .7 (u)(p) fiir alle p € #(X) definiert als

F(u)(p) = u(p) = u(F (). (2.5)

3Die benétigte Konvergenz ist bzgl. der schwach-*-Topologie zu verstehen.
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Wie bereits durch die Konvergenzeigenschaften von Distributionen erwihnt, wird .#/(X)
mit der schwach-*-Topologie ausgestattet, beziiglich dieser ist die Fourier-Transformation
stetig. Wie bereits erwéihnt ergibt die Fourier-Transformation auch mit komplexwertigen
Argumenten Sinn, wenn man das betrachtete Skalarprodukt dementsprechend modifiziert.
Sei v € &'(X) eine Distribution mit kompaktem Triger, dann ist die Fourier-Laplace-
Transformation fiir Distributionen definiert durch

F(u)(€) = a(€) = u(e 1t9) = u (ac o e*i<m’€>) = (u,e”€) g, zeX. (2.6)

Insbesondere kann gezeigt werden, dass @ : C* — C holomorph ist fiir alle & € C", bei-
spielsweise in [DJ69][Part IT, Ch. 30]. Aufgrund des Satzes von Liouville erkennt man auch,
warum die Fourier-Laplace-Transformation nur eingeschrinkt auf den Raum der Distribu-
tionen mit kompaktem Tréager wohldefiniert ist, da holomorphe Funktionen die Eigenschaft
haben exponentiell zu steigen - eine Fourier-Transformation wére in diesem Fall somit nicht
moglich. Auch eine Riicktransformation ldsst sich auf .#/(X) definieren: Da fiir Testfunk-
tionen ¢ die Identitét

¢ =(2m)"p, mit @(z)=p(-x)

bereits durch elementares Rechnen gezeigt werden kann, folgt fiir temperierte Distributionen

ue S (X)

a(f) = (2m)" a(f). (2.7)

Weiterhin lasst sich das Faltungstheorem fiir Funktionen auf folgende natiirliche Art verall-
gemeinern.

Definition 2.5. Die Faltung einer temperierten Distribution u € .#/(X) mit einer Funktion
v € P(X) ist definiert als

(ux@)(z) == u(Tep) mit 7,0(y) = p(z —y),

wodurch sich auch die Faltung zweier Distributionen w1, us (mindestens eine mit kompaktem
Tréger) konstruieren ldsst durch

(u1 * ug) * @ = ug * (ug * Q).

Somit kann das Faltungstheorem fiir Distributionen auf analoge Weise geschrieben werden,
denn auch auf einem Distributionenraum zerféllt die Fourier-Transformation einer Faltung
in die Multiplikation mit den einzelnen Transformierten:

Theorem 2.6 (Faltungstheorem). Sei u € ./(X) eine temperierte Distribution und v €
&'(X) eine Distribution mit kompaktem Triger, dann ist u *x v € #/(X) und es gilt das
Faltungstheorem

F(uxv) = (2m) 5 F (u) - F(v).

Eine weitere wichtige Definition, die sich in der spéteren Untersuchung als niitzlich erweisen
wird, ist die Tréger-Funktion einer Menge.

10



2.3. Die Joint Numerical Range beliebiger Operator-Tupel

Definition 2.7. Fiir ) # K C R™ abgeschlossen und konvex ist die Trédger-Funktion defi-
niert durch

Hy :R" — R, Hg(n):=sup(z,n), ne€R™
xzeK

Die Tréger-Funktion ist eines der fundamentalsten Hilfsmittel der konvexen Geometrie und
hilfreich zur Konstruktion von Halbrdumen, weil

{xeR": (z,§) <Hk(}, [&=1

einen Halbraum definiert und die Menge K komplett enthélt. Die Triger-Funktion wird nun
fiir einen sehr wichtigen Satz der Distributionentheorie benétigt.

Da die Fourier-Laplace-Transformierten von Distribution immer holomorph auf C™ sind,
stellt sich die Frage welche holomorphen Funktionen auf diese Weise von Distributionen
yerzeugt® werden konnen. Dariiber macht der Satz von Paley-WieneIﬁ fiir Distributionen
eine Aussage.

Satz 2.8 (Paley-Wiener-Schwartz). Sei K € R™ kompakt mit Triger-Funktion Hp. Ist
weiterhin u € &”’(K) eine Distribution mit Tréger in K, so gilt

30 >0,NeN: |a(€)] < O(1+ [¢))NeHrxmE) ¢ c Cm. (2.8)

Umgekehrt ist jede ganze analytische Funktion auf C™, die eine Abschitzung der Form ([2.8)
erfiillt, die Fourier-Laplace-Transformierte einer Distribution mit Trager in K.

Beweis. Der Beweis befindet sich in [H6r90|[Theorem 7.3.1 p. 181]. O

Lars Hormander konnte noch eine stirkere Abschétzung an Fourier-Laplace-Transformierte
Distributionen treffen, wenn ausreichend Kenntnis iiber den singulédren Tréger der Distribu-
tion besteht und umgekehrt, genauer:

Satz 2.9 (Erweiterung des Satzes von Paley-Wiener-Schwartz). Sei u € &’(X) und 0 #
K C R”™ konvex und kompakt mit Tragerfunktion Hg, dann sind dquivalent:

i) sing supp(u) C K
ii) 3N €N, 3 eine Folge (C)meq1,2,...}, sodass [4(€)] < Cp, (1 + \£|)N e (Im(£))
wenn [Im(&)| < m In(|€| 4+ 1). (2.9)

Beweis. Zu finden in [H6r90][Theorem 7.3.8. p. 186]. O

2.3. Die Joint Numerical Range beliebiger Operator-Tupel

Fir T; € L(H), j € {1,..., N} definiert man den gemeinsamen, numerischen Wertebereichﬂ
durch

G(Th, ... Tn) - = {((Tah, ), oo, (T, 0) )« [0l = 1}

4In der Version fiir Distributionen wird der Satz deswegen oft als ,,Satz von Paley-Wiener-Schwartz“ be-
zeichnet.
S5englisch: ,,Joint Numerical Range“ - kurz: JNR.

11
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Fiir den Fall, dass H = C" ist, folgt die dquivalente Formulierung mit A; € C**"*

1 T
G(Aq, ..., Ay) i= {(2 Az 2 ANZ) ze (C\O}.

2tz 2tz

Nun ist diese Definition im physikalischen Sinne nicht immer sehr praktisch. Zun#chst einmal
wiirde ein quantenmechanischer Zustand [¢) € H mit /(¢ |1) = ||| = 1 einem reinen
Zustand entsprechen. Reine Zusténde sind Idealisierungen, da die Menge der reinen Zusténde
ein Maf} von Null hat und dadurch (in einem Labor) nicht realisierbar sind (siehe [Wer16|[Ch.
3)).

Des Weiteren ist die Konvexitét eine andere wichtige Eigenschaft bestimmter Mengen. Eine
genauere Untersuchung bzgl. der Konvexitidt der JNR liefert zum Beispiel:

Satz 2.10 (Hausdorff-Toeplitz). Der numerische Wertebereich eines Operators ist konvex
und kompakt.

Beweis. Der Beweis wird in dem Short-Paper [Gus69] behandelt. O

Das Problem ist nun jedoch, dass sich die Eigenschaft der Konvexitit der JNR nicht auf
beliebig grofle Operator-Tupel iibertragen ldasst. Dieser Sachverhalt wird nédher untersucht
in [GJKO3] und |GZ12].

Diese Probleme stellen sich jedoch nicht, wenn man eine (fiir die Physik natiirliche) Mo-
difikation der JNR durchfiithrt in der Form: Die Joint Numerical Range der Operatoren
Tj S R(H) ist

R(Ty, ..., Tw) == {( Te(pT1), ..., Te(pT) ) : p € S(H)}. (2.10)

Diese Menge ist nun konvex, da sie das Bild einer affinen Abbildung iiber dem Raum der
Dichteoperatoren ist. Diese sind nach Definition konvex, da jeder Dichteoperator eine Kon-
vexkombination eindimensionaler Projektoren ist. In dieser Definition erkennt man auch den
Grund der nicht-Konvexitéit beliebiger Wertebereiche G. Diese sind lediglich Bilder affiner
Abbildungen iiber dem Raum der reinen Zustédnde und dieser ist i.A. nicht konvex. Es gilt
also: conv(G(Th, ...,Tn)) = R(T1, ...,Tn), wobei conv die konvexe Hiille bezeichnet.

2.4. Die lineare Algebra hermitescher Matrizen

Von fundamentaler Bedeutung in dieser Ausarbeitung sind Ausdriicke der Form

e k

A
ed = o mit A € C™*" und A° =1
k=0

der sogenannten Matrixexponentialfunktion. Seien Ay, ..., A, € C"*™ und p eine Dichtema-
trix auf C", dann gilt durch die Definition der Matrixexponentialfunktion folgender Zusam-
menhang:

Aj = A} hermitesch <= i4; = z(A;) schiefthermitesch

= U;:= e unitér, also Ut = U1,

Satz 2.11 (Dichtematrizen in C?). Die Darstellung der komplexwertigen 2x 2-Dichtematrizen
hat eine besonders einfache Form und findet oft Anwendung, wenn Qubits charakterisiert
werden sollen. Man kann jede Dichtematrix p € S(C?) schreiben als

12



2.5. Elemente der Stérungstheorie

1( 147 L — T 1
p= - 1 ! ol - — (1 +ri01 + re0o2 + 7303) (2.11)
2 1+ Z"I"Q 1— T3 2
mit den spurfreien Paulimatrizen
0 1 0 —i 1 0
o1 = ,  O2= , 03 =
1 0 i 0 0 -1

und der Bedingung r§ +73 +r3 < 1 fiir 71,72, 3 € R. In Kurzform werden die Paulimatrizen
als & = (01, 02, 03) notiert.

Die Eigenwerteﬁ einer Matrix A sind die Losungen A von det(Al — A) = 0, dem sog.
charakteristischen Polynom. Ist die Matrix jedoch als Funktion eines &dufleren Parameters
veranderlich, so kann die Eigenwertberechnung analog stattfinden, jedoch erhélt man als
Losung Eigenwertfunktionen. Besondere Bedeutung werden in dieser Arbeit die Eigenwerte
von Matrizen nach Multiplikation mit einer komplexen Zahl haben. Formal also

§-AeC = (£ A) o= MO

Das charakteristische Polynom ist dann kein Polynom im eigentlichen Sinne mehr, da nun
einzelne Matrixelemente innerhalb der Determinante Funktionen sind

det(ME)L —€-A) =0 =T g e A) = (A(€),- - MO}

Die Erwartungswerttupel sind dann definiert als

a=(VA(),.... V()" = VeA©).

Explizite Darstellungen solcher Eigenwertfunktionen und der Erwartungswerttupel werden
in den néchsten Kapiteln haufiger auftreten.

2.5. Elemente der Storungstheorie

Die Notation der Stérungstheorie stammt grofitenteils aus [Werl6]. Eine grofiere Einfithrung
in dieses Themengebiet, der korrekte Umgang mit entarteten Eigenwerten und nicht analy-
tische Stérungen werden jedoch in [Kat82][p. 72 ff.] behandelt. Eine komplette Einfiihrung
in die Storung von Punktspektra und die Approximation der Grundzustinde von sogenann-
ten Schrodingeroperatoren bietet [RS78|[Ch. XII]. Die hier verwendeten Methoden werden
jedoch zunichst auf Matrizen ohne Entartung angewandt.

Im Allgemeinen betrachtet man Operatoren, die sich schreiben lassen als H(§) = Hy + £H;
mit einem kleinen Parameter ¢ € C. Die zu losende Eigenwertgleichung lautet dann

H(§) V) = (Ho + £Hy) |¥) = En(8) [V) - (2.12)

Angenommen das Spektrum und die Eigenvektoren von Hj seien bekannt, dann ist es Auf-
gabe der Storungstheorie Spektrum und Eigenvektoren von H in Abhéngigkeit von £ zu

SIm Folgenden mit op fiir das Punktspektrum bezeichnet.
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2. Mathematische Grundlagen

ermitteln. Oft wird auch & = 1 gesetzt, um H; selbst als kleine Stérung zu betrachten.
Betrachtet man wieder den endlich dimensionalen Fall, so sind Eigenwerte E,,(§) und Ei-
genvektoren |V, (§)) gesucht und ein Potenzreihenansatz in Potenzen von ¢ liefert in vielen
Fillen gute Nidherungen. In endlichen Dimensionen ist die Stérungstheorie als Teilgebiet der
linearen Algebra vollstdndig verstanden und alle auftretenden Ausdriicke sind vollstdndig
analytisckﬂ Die Potenzreihen setzt man folgendermaflen an:

_ ZET(Lk) € und |¥,(&) = Z ‘\Ij%k)> &
= k=0

Die hochgestellte Zahl in Klammern bezieht sich dabei auf die Ableitung nach dem Para-
meter, in Analogie zur Taylorreihe:

1 d*E, 1d*|v,,)
Bk — — (k)N — =

Ev =i age wnd ‘\I’" > K dek
Setzt man nun die Potenzreihenansitze in die Eigenwertgleichung (2.12)) ein und ordnet
die einzelnen Terme in Potenzen von &, so ergeben sich Eigenwerte in erster und zweiter
Néherung durch

EW = <\1:§LO> ‘ H, ‘ \p;0>> (2.13)
@) <\I’5’?) ’ Hi - B ‘ \P%O)> I ©0) £ p(0)
E® = Z 50 50 , B £ EQ (2.14)

und Eigenvektoren in erster Néherung durch

(1)
(o)< ’H —En ‘\D > (0) (0) (0) (0)
) = Dt =S W BY A B, BB

Hohere Ordnungen lassen sich durch Koeffizientenvergleich der Potenzreihen vollkommen
analog gewinnen. Mit diesem Grundgeriist lésst sich nun auch die Auswirkung einer explizit
gegebenen Stérung errechnen.

2.5.1. Stoérungen mit trigonometrischen Polynomen

Betrachtet wird eine operatorwertige Funktion A(t) = sin(t)A; + cos(t)Aa, t € Ry.

Fiir diesen Fall wird im Folgenden die Storungstheorie angewandt, um zu analysieren wie
sich die Erwartungswerte der einzelnen Matrizen unter einer solchen Stérung verhalten - der
Einfachheit halber sind die Eigenwerte der Matrizen A; und As nicht entartet, sodass ein ein-
deutiges Orthonormalsystem dieser Matrizen existiert. Stellt man die Eigenwertfunktionen
von zwei zufillig generierten, dreidimensionalen, hermiteschen Matrizen mit einer solchen
Storung dar, so erkennt man deutlich eine 27-Periodizitét, jedoch sonst relativ chaotisches
Verhalten:

7In unendlichen Dimensionen kénnen jedoch bestimmte (pathologische) unbeschrinkte Operatoren kon-
struiert werden, deren Potenzreihe in keinem Punkt konvergiert.
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u ( |
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| 2
477/\_/_\

Abbildung 2.1.: Eigenwertkurven von A(t) fiir zwei zufillig generierte dreidimensionale
Observablen

[~

)
)

Ny

Formt man die Eigenwertgleichung nach den Eigenwertfunktionen um, so erhélt man

A@) [9(1) = a) [9(1)) = a(t) = (O [AQ@) [$(1) -

Die Erwartungswerttupel kénnen auch im Formalismus der Stérungstheorie angegeben wer-
den. Man erhélt diese durch den Erwartungswert der ungestérten Operatoren im Skalarpro-
dukt der Eigenzusténde der gestorten Operatoren (vgl. (3.1)):

(¥(t) | Ar[¥(2))

a(t) = (Y(t) [A|(1) =
@)= WA = i 4e1 v

Mochte man nun Aussagen iiber die genaue Form und die Eigenschaften dieser Erwartungs-
werttupel treffen, so muss die Stérungstheorie herangezogen werden, damit die Eigenvekto-
ren der gestorten Operatoren sukzessive errechnet werden kdnnen:

1. Ordnung

Die Eigenwertgleichung (2.12) lisst sich nun, wenn man alle Terme der Ordnung O(£2)
vernachléssigt und die Kurznotationen ’w(o) (t)) == |1(t)) und ’¢(1)(t)> := |4/ (¢)) einfiihrt,
folgendermaflen aufstellen:

A1) [ (1)) + A@) [9'(8) = o' (8) [(1)) + a(t) [4'(2)) (2.15)

wobei der Strich die Ableitung nach dem Parameter t bezeichnet, also

A'(t) = —sin(t) Ay + cos(t) A2 und o/ (t) = (P(t) | A'(t) |¥(t)) = _cz:(lt()t) -a(t).

Durch umformen erhélt man die dquivalente Darstellung

15



2. Mathematische Grundlagen

(A(t) = a(®) [¥'(1)) = (= A(t) + ( ) 1Y)
= (WO [A() - () [o(1) = (2.16)

Ferner bezeichnet |, (t)) den Eigenvektor des p-ten Astes, so gilt fiir v # pu:

<z/),,(t)’A _O‘ut’ L(t>:< ‘_A/t a;t‘wu ))
(Do () [A®) [9,() — (o () | @ (t) [ 97,(1)) = — (o () | A" (1) [ 90 (8)) + (o (t) | ), () [ 9 (2))
(o (t) = () (Vo [ ) = = (W (&) | A'(2) [ (8)) + ), (2) (¥ (1) [ 9 ()) -
=8,,=0
Wodurch die Matrixelemente (v, (t) ] ¥/, (t)) eine explizite Form erhalten
(o0 (t) = au(t)) (Do (t) [ ¥7,(8)) = — (¥ (&) [ A(8) [ (1))
(0.0 | 930) =~y O AW [0). 217)

Weiterhin gibt es eine Eichfreiheit in der Wahl der Eigenvektoren, da die Phase des Gesamt-
systems nicht festgelegt ist. Betrachtet man beispielsweise

Re (4 (0) [ 44,(0))) = % (1) 6 (0)) =

so fiihrt der Eigenvektor ‘du(t)> := eu® |4, (t)) zu physikalisch identischen Ergebnissen,

wenn f,(t) eine reellwertige Funktion ist. Diese Eichfreiheit wird durch eine Konvention
aufgelost:

(0) | 9,(8)) = Tom (18,,(6) (W (0) | 300) + (3 08) [V 0)) = B(8) + T ({2, 0) | (0))
Bu(t) wird nun gerade so gewhlt, dass 0.B.d.A. Im ((¢,(t) | P, (t))) = 0 gilt.

Wendet man von links Y |1, (t)) auf Gleichung (2.17)) an und verwendet die Vollsténdigkeitskeits-
v

relation 1 = > [, (t)) (1, (1), so ergibt sich

ZJ0

[U0)) = 3 ~ oy 0 | A0 (00 6 0)

vEL

wodurch es moglich ist die Dynamik der Erwartungswerttupel zu analysieren. Sei dazu

(1) = % (00 Ax [ 1(0)) = 2Re ({1 (0) | Ax | (1))

=3 o e () A 0 )| A 0)

fiir die Werte k € {1,2}. Verwendet man schliefilich die Identitét

sin(t) (P (1) | Az [ 9 (t)) + cos(t) (u () [ Ar[1u(t)) = 0,
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2.5. Elemente der Stérungstheorie
die aus (2.16]) folgt, so ldsst sich feststellen, dass

=[(u () | Ax |9 (1))

1(8) = 37 ~ s Rl sin(t) 0,0) | A1 [00,(0) (00| 41 [9,,(0)
vEL v "

+ cos(t) (Yu(t) | A |90 (1)) (o (1) [ A2 |Du(t)))

-y _+(—sin(t)| (W () | Ay |9 (8)) |2
ay(t) — a,(t)

—sin(t) (Y (t) | Az |90 (1)) (Do (1) [ A2 |9 (1)))
= (a6 (8) | Az | 0 ()2

=3 ath (106 0) | A1 [ (D) P+ | (u0) | A2 | (1)) 1)

gilt und analog fiir a, 2(t). Insgesamt folgt somit in erster Ordnung:

ay,1(t) =sin(t)A,(t) und  ay,2(t) = —cos(t)AL(t)
it A,(t) = 72
mi #()_;au(t)_ay(t)

Nimmt man dieselben Matrizen, die zu Abbildung gehoren und plottet die resultieren-
den Erwartungswerttupel zweidimensional, so erhédlt man:

(I @@ | ALl () P + [ (W) [ A2 [0 () ) -

<A2>

<A1>

Abbildung 2.2.: Erwartungswerttupel von A(t) fiir zwei 3-dim. hermitesche Matrizen

Man erkennt direkt warum die Definition der Erwartungswerttupel herangezogen wurde, da
dieses Diagramm dieselben Informationen trigt wie Abbildung [2.5.1} jedoch in einer weni-
ger chaotischen Form. W#hlt man nun eine beliebige Steigung und zeichnet alle Geraden
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2. Mathematische Grundlagen

mit dieser Steigung ein, die Berithrpunkte an den Erwartungswerttupeln haben, so wer-
den es immer drei sein. Diese drei Tagenten sind dann die Eigenvektoren zu den jeweiligen
drei Eigenwerten aus Abbildung fiir einen bestimmten Wert des Parameters. Diese
Beobachtung lasst sich in beliebige Dimensionen fortfithren. Fiir zwei vierdimensionale her-
mitesche Matrizen sehen die Erwartungswerttupel mit rot eingezeichneten Tangenten fiir
eine beliebige Steigung beispielsweise so aus:

<Ag>

Abbildung 2.3.: Erwartungswerttupel von A(t) fiir zwei 4-dim. hermitesche Matrizen

Die soeben errechneten Werte fiir a,,(t) beschreiben dabei die Bewegung dieser Tangenten.
Es ist sofort klar, dass diese Funktionen glatt sind und weiterhin zeigen Computersimula-
tionen, dass sich die einzelnen Tangenten nicht schneiden. In héheren Dimensionen ist diese
Aussage auch nicht mehr trivial, allein die zunéchst unstetig wirkenden ,,Spitzen“sehen auf
den ersten Blick aus, als wiirden sie von Entartungen herriihren, jedoch werden die Kurven
in ihrer Nahe stetig durch die Tangenten durchlaufen.

Mochte man daher genauere Aussagen iiber die Dynamik der Tangenten, insbesondere im In-
neren dieser Strukturen mit den unstetig wirkenden Ecken treffen, so wird die Stérungstheorie
in zweiter Ordnung herangezogen.

2. Ordnung

Vernachléissigt man nun alle Terme der Ordnung O(£3), so erhélt man

(A(t) = a(®) [¢"(1) + (A'(t) — o' (1) ' (2)) — o (8) [¢:(2)) = 0. (2.18)

Lost man dieses nun nach dem [¢”(¢))-Term auf und sei wieder |¢,(t)) der Eigenvektor des
u-ten Astes, so gilt

(A1) = au(t)) [ (1)) = —(A'(t) — 0, (1)) |7, (8)) + i (8) [ (£)
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2.5. Elemente der Stérungstheorie

und nach Multiplikation von links mit (], (¢)| ist fir p # v

(o () [ A(t) = () [ 4(1) = — (o () [ A'(8) — 0, (8) [ ¢, (8)) + (¥ () | o (t) | (D)) -
=) =) =) W (D) |, (1)) =0

Betrachtet man die beiden Seiten dieser Gleichung getrennt und benutzt die Linearitit des
Skalarproduktes, so ist

) <wv | W}” > <¢v(t) | O‘/L(t) |w//:(t)> = (O‘V(t - a# <¢u |7/}Z(t)>
i) = (0 (1) | A'(t) | 9,(1)) — e, (8) (o () [ 4, (8)) = (ai, (8) = o, (1)) (2 (8) | ¢7.(1)) -

Insgesamt gilt damit

(0w (1) = () (v () | (1)) = (s, () — 0, () (P (1) [ w7, (2)) -
Benutzt man nun noch um die Matrixelemente in ii) weiter zu vereinfachen, so folgt
woy () —ap(t) ' a, (t) — a,(t) '
<wl/(t)"l/),u(t)> - Oéu(t)—()(u(t) < V(t)|w,u(t)> (Oéy( )—O[ (t))g <wl’(t)‘A(t)|d}#(t)>
(¥

Nutzt man wieder die Vollstédndigkeitsrelation 1 = > |4, (¢)) (¢, (t)|, dann gilt

) =3 M (o (8)| A'(8) | (8)) [ 1))

uFV

Insbesondere ist damit also

() = % (u(t) | A [ 04(8)) = 2Re (((6) | Ax |01(1)))
2y —@) Re({, (£) | A'(t) |6, (1)) (6 (8) | Ax | ()

2= (o) = au(®)?

=23 L Re(—sin() ()| 41(0) | 0 (0| A 10

u(t))
V;éu
+ cos(t) (v (t) | Az (t) [ (t)) (Wu(t) | Ak [¥0 (1))

Im Folgenden am Beispiel von k = 1 gezeigt:

(t) :|<¢’M(t)|A1 \111,,(t))|2
pa(t) =2 —aW Re(—sin(t) (4 (1) | A (8) [4(5) (6 () | A [ 10(1))
V7£N l/ 12
+ cos(t) (Yu(t) [ Ar | (1)) (1 (1) ] A2() |9 (2))

=—sin() (Y. (2) | A2(8) [P0 (1))

= —2einlt) 3 = (1604 [0 00 60| A2 001 )

2= (0 () — a,(0)
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2. Mathematische Grundlagen

Es ergibt sich fiir £ = 2 auf analoge Weise

.. . o o (1) — (1)
dpo(t) = cos(t)Au(t)  mit  Ay(t) = Au(t)m-

Es zeigt sich auch in der zweiten Ableitung eine 2m-Periodizitdt und die Glattheit der Funk-
tion. Diese Funktionen beschreiben nun die ,,Beschleunigung®“ der Eigenvektoren. Die Null-
stellen entsprechen damit u.a. den angesprochenen Spitzen, in denen sich die Durchlaufge-
schwindigkeit der Eigenvektoren Null annéhert.
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3. Konstruktion und Eigenschaften einer
verallgemeinerten Wignerfunktion

Um eine graphische Analyse der Wignerfunktion gewihrleisten zu kénnen, werden von nun
an endlich dimensionale Hilbertrdume betrachtet. Genauer der Hilbertraum H = (C™, (., .))
mit dem Standard-Skalarprodukt

(,):C"xC"—C, (a,b):=>_ apby.
k=0

Ferner werden die Observablen durch hermitesche Matrizen dargestellt und einige funktio-
nalanalytische Besonderheiten, wie sie in der Einfithrung bereits erwédhnt wurden, kénnen
abgeschwécht betrachtet werden.

3.1. Historischer Hintergrund: Weyl-Quantisierung

Die Wignerfunktion in ihrer ersten Form wurde in der Theorie der Weyl-Quantisierung, die
1928 von Hermann Weyl ins Leben gerufen wurde, definiert. Die Weyl-Quantisierung war
ein Versuch den Formalismus der Quantenmechanik durch Korrespondenzprinzipien auf den
Phasenraum der analytischen Mechanik zu projezieren|'}

Sei dafiir ' der Phasenraum, der aufgespannt wird von (q1,...,q3n ; P1,---,P3n) =: (¢, D)
und f eine Funktion auf diesem. So war die Idee Weyls einen hermiteschen Operator ® = ®f
auf f(q,p) wie folgt umkehrbar abzubilden: Hier ist diese Weyl-Transformation im Fall
fiir zweidimensionale Phasenraumfunktionen in der Version fiir Orts- und Impulsoperator
angegeben

1 ) )
Qo p(f):= @) / folq,p) p €4 Q-D+HE=P) ayy dg da db

T xR2
oo

falgp) =2 / =27 (q 1 y|Dg p(ld — y) dy.

— 0o

Fugene Wigner verwendete solch eine Formulierung 1932 in der statistsichen Physik, um
thermodynamische Gasmodelle mit N Atomen und Quantenkorrekturen zu analysieren. (vgl.
[Wig32])

Natiirlich ist eine solche Phasenraumformulierung der Quantenmechanik ein legitimer Ver-
such um etwaige Verstdndnisprobleme und scheinbare Paradoxien (z.B. Unschérfe, Ver-
schrinkung, Spin) auf ein klassisches Analogon abzubilden. Jedoch stellt einen die unter-
schiedliche Struktur von H und I im Allgemeinen vor groie Probleme. Die Operatoren in
einem Hilbertraum vertauschen in der Regel nicht und auch die Dimensionen der Riume
stimmen meist nicht iiberein. So ist a priori nicht klar, welche Eigenschaften eine Phasen-
raumfunktion erfiillen muss. Betrachtet man ein freies quantenmechanisches Teilchen und

IWeyl benutzte die Gruppentheorie, um Aussagen iiber die Quantenkinematik zu treffen und entwickelte
dabei das Grundgeriist dieser Quantisierung (vgl. [Wey28|[§44, p. 196 ff.]).
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verlangt von der Phasenraumfunktion einmal stetig differenzierbar zu sein, so sind der Hil-
bertraum H = L?(R?) und der Raum C*(T") = C'*(RS) nicht isomorph. Fiir andere Phasen-
raumfunktionenrdume gilt natiirlich ein analoges Argument.

Eine Wignerfunktion eines Zustandes ist definiert, als die Weyl-Transformation des zu-
gehorigen Dichteoperators. Diese Funktionen erfiillen alle Axiome einer Wahrscheinlichkeits-
dichte, bis auf die Positivitdt, wie es bereits in der Einleitung erwidhnt wurde.

Da also die Phasenraumquantisierung oft nicht verwertbare Resultate liefert, wire anzu-
nehmen, dass auch die Wignerfunktion in der modernen Physik an Bedeutung verloren
hat. Dem ist aber nicht so, da vorallem in der Quantenoptik und der Festkorperphysik die
Wignerfunktion als approximatives Hilfsmittel verwendet wird um den Aufbau unbekannter
Systeme besser zu verstehen. Die wohl wichtigste Eigenschaft liegt in der korrekten Dar-
stellung von Marginalverteilungen einer Variablen, wenn also die jeweils anderen Variablen
ausintegriert werden. Ist W,(a1, a2) eine Wignerfunktion, so sind die Marginalverteilungen

[ Walar.a2) dor = (aalplaz) = (o) wnid [ Wiylar,a2) daz = (arlpla) = (o

die exakten Wahrscheinlichkeiten der jeweiligen Variablen, nur in beiden Variablen gleich-
zeitig ist dies nicht der Fall. Weiterhin ist die Gesamtwahrscheinlichkeit erhalten

/ da1 / da2 Wp(al,ag) = TI‘(,O) =1.

Im Folgenden wird dieser historische Gedanke abstrahiert, sodass die resultierende Pseudo-
wahrscheinlichkeitsdichte nichts mehr mit der Weyl-Quantisierung zu tun hat. Der Name
» Wignerfunktion* wird jedoch beibehalten, da das Ergebniss die Arbeiten Wigners verall-
gemeinert, obwohl die Herangehensweisen komplett unterschiedlich sind.

Die klassische Wignerfunktion ldsst sich drei-
dimensional darstellen, wenn man zum Bei-
spiel den eindimensionalen harmonischen Os-
zillator betrachtet. Die Variablen Ort und
Impuls sind dann als x und y Komponenten
aufgetragen - der Wert der Wignerfunktion
als z-Komponente. So wie die Energienive-
aus des Oszillators besitzt auch die Wigner-
funktion eine ,,Quantenzahl® n. Fir n = 4
hat die Wignerfunktion beispielsweise fol-
gende Form:

Abbildung 3.1.: Wignerfunktion des harmoni-
schen Oszillators fiir n = 4
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3.2. Die Konstruktion einer verallgemeinerten
Wignerfunktion

In Anlehnung an das euklidische und das komplexe Standardskalarprodukt werden folgende
Kurznotationen eingefiihrt:

(Ay, ..., A)T = A, ZgaAa =:£-A und Z €atn =: (€, a) fiir komplexe Zahlen &,.
a=1

a=1

Als gegeben werden die projektionswertigen Observablen (hermitesche Matrizen) 4y, ..., A, €
R(C™) und der Zustand p € S(C™) vorausgesetzt. Gesucht ist nun eine gemeinsame Pseu-
dowahrscheinlichkeitsverteilung W,(a) fiir £ - A mit € = (&1, ...,&,)7 € C™. Die Erwartungs-
werttupel der mit £ gestorten Operatoren A errechnen sich durch

{a=(p|Alp) eR™ | T p,&: £- Alp) = Ap)}, (3.1)

wie es bereits im letzten Kapitel gezeigt wurde. Die Menge der Erwartungswerttupel ist
eine endliche Teilmenge des R™ und beschriankt, da die Eigenwerte diskret sind und nach
Multiplikation mit (beschrénktem) &€ nicht iiber alle Grenzen wachsen kénnen. Zur spéteren
Visualisierung in zwei Dimensionen wird die Stérung durch R? 3 ¢ = (sin(t), cos(t))? fiir
t € [0,00) beschriebeﬂ so wie es im letzten Kapitel bereits storungstheoretisch analysiert
wurde.

Zunéchst jedoch zu der Idee einer Wahscheinlichkeitsdichte: Betrachtet man eine Zufallsva-
riable X und existiert eine integrierbare Funktion f : R — [0, 00), sodass

b
Pla<z<b) = /f(x)da:

fiir alle moglichen Werte a und b gilt, so nennt man f(z) die Wahrscheinlichkeitsdichtefunk-

tion zur Verteilung von X. Als Normierungsbedingung gilt weiterhin [ f(z) do = 1, da die
—o0

Wahrscheinlichkeit, dass ein beliebiger Wert angenommen wird genau Eins sein muss. Auch

in hoheren Dimensionen ldsst sich dieses Konzept konstruieren: Die Wahrscheinlichkeit, dass

X in einer Menge A liegt ist dann
P(X € A) = /da: f(x), dx=dx---dz,
A

mit f: R™ — [0,00)*™ und Borelmengen A € B(R").
Mithilfe einer Wahrscheinlichkeitsdichte f(z) einer Zufallsvariable X lassen sich weiterhin
Erwartungswerte berechnen. Diese sind definiert als

E(X)= /dx xf(z) und allgemeiner FE(g(X)) = /dx f(x)g(x). (3.2)
A A

In der Quantenmechanik ist nun der Erwartungswert eines Operators A angewandt auf einen
Zustand p gegeben durch E,(A) = Tr (pA), sodass sich (3.2) umschreiben ldsst zu

2Die spezielle Wahl dieser Storung wird in dem Paper [CS85] motiviert.
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Tr (p g(€, A)) = / da f(a) g(€.a). (3.3)

So wie man den Loésungsraum partieller Differentialgleichungen von Funktionen auf Distribu-
tionen erweitert hat, um eine groflere Anzahl an Losungen zu erhalten (oder Losungsfolgen,
die in speziellen Topologien gegen Losungen konvergieren), so wird die Wignerfunktion ganz
konkret auf eine Distribution erweitert, um immer ein Objekt f zu finden, dass fiir
beliebige Operatoren erfiillt. Anschaulich bedeutet das: Fiir die Wahrscheinlichkeitsdichte
f(z) ldsst man nun, in Analogie zur Integraldarstellung von Distributionen (vgl. (2.2))), auch
Distributionen zu - die Distribution, die erfiillt wird fortfolgend als W, notiert und als
Wignerfunktion des Zustandes p und der Observablen A bezeichnet. Dass ein solches Ob-
jekt immer existiert wurde in der Einfithrung der Distributionentheorie bereits erwiahnt und
selbst an den Punkten eines womdglich nichtleeren singuldren Trégers, an denen eine reine
Integraldarstellung scheitern wird, ist die Moglichkeit gegeben ein Folge von Testfunktionen
zu finden, die im Grenzfall gegen eine solche Distribution konvergiert.

Es stellt sich also nun die Frage, wie man auf eine explizite und eindeutige Form von
W, kommt, da ja noch eine Freiheit in der Wahl von g liegt. Wahlt man ¢ jedoch ge-
schickt, so lassen sich stiirkere Aussagen iiber W, treffen. Sei dazu g(X) = e~'*X, bzw.
9(X)Y) = e~ “X.Y) dann vereinfacht sich die Formel fiir Erwartungswerte mithilfe der
Fourier-Laplace-Transformation von W, zu

o~

E,(¢-A) =T (p e*i@-A)) - / da W,(a) e 7€) = T (€).

Man kann die physikalische Definition von Distributionen benutzen, sodass W, reellwer-
tige Argumente hat. Wiirde man dieses Objekt mathematisch korrekt betrachten wollen,
so miisste geschrieben werden W, (£ — e*i@"‘)). Um die Fourier-Laplace-Transformation
durchfiihren zu konnen, musste der mogliche Definitionsbereich von W), eingeschrénkt wer-
den auf den Raum der Distributionen mit kompaktem Triger W, € &”.

Auf der Obermenge .’ ist die Fourier-(Laplace-)Transformation ein Automorphismus, so-
mit ist die Fourier-Laplace-Transformation eine eindeutig bestimmte Zuordnungﬂ Ferner
lasst sich W (&) schreiben als

o~

W) =Tr (p e_i‘s‘A) = /da1 --day, Wy(a) e~ H&a), (3.4)

3.3. Der Trager der Wignerfunktion

Das Hauptaugenmerk liegt zunéchst auf der Fourier-Laplace-Transformierten Wignerfunk-
tion

W:Cr»C, WE) =T (p e—i(ﬁ'A)) . (3.5)

W ist nach (2.6)) holomorph und ldsst sich anders darstellen, da die Matrizen umgeschrieben
werden konnen zu

5 cA= ZfaAa = Z Aa(E)Pa(E)a
a=1 a=1

3Durch das Integral ist die Eindeutigkeit modulo Lebesguescher Nullmengen und Addition mit Konstanten
zu verstehen.
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3.3. Der Trager der Wignerfunktion

mit Eigenprojektoren P, (&) und der reellen Eigenwertfunktion A, (£€), sodass der Exponen-
tialterm die Form

e =N P (g) e @ (3.6)
a=1

hat. Diese Operationen sind legitim, da hermitesche Matrizen auch nach Multiplikation mit
komplexen Zahlen normal sind und somit durch den Spektralsatz in Diagonalform gebracht
werden konnen. Auflerdem zerfillt das Matrixexponential eines Projektors wieder in den
Projektor. Der Einfachheit halber wird angenommen, dass die Eigenwerte von £ - A nicht
entartet sind, also n verschiedene Funktionen )\, existieren.

Zunéchst wird gezeigt, dass diese Distribution ihren Tréger innerhalb der JNR der Matrizen
A, hat.

Satz 3.1. W ist konstruiert als die Fourier-Laplace-Transformierte einer Distribution W, €
&'(R™). Ferner ist W, eine Distribution mit Tréger in dem gemeinsamen numerischen Wer-
tebereich R = {(Tr pAy,..,TrpA,) : p € S(H)}. Es gilt also W, € &'(R).

Beweis. Nach ist R konvex. Und da aus der Hermitezitdt der Observablen Tr(pA;) € R
folgt, ist R C R™. Weiterhin ist R kompakt, weil R das Bild einer kompakten Menge unter
einer stetigen Abbildung ist. R ist als kartesisches Produkt kompakter Mengen (vgl. Satz
von Hausdorff-Toeplitz) kompakt.

Ferner ist W holomorph auf C", da Fourier-Laplace-Transformationen nach immer ho-
lomorph sind. Folglich fehlt nun noch eine Abschétzung der Form . Diese wird in zwei
Schritten gezeigt:

Abschitzung erster Teil:

Teilt man & in seinen Real- und Imaginérteil auf, so lisst sich W schreiben als

o~ o~

W) =W(w+in)=Tr(p e*i”'AJr"'A) mit v, € R".

Der Exponentialterm kann nun abgeschétzt werden, indem man ihn in die sogenannte
Trotter-Form bringt

||67w~A+71'A|| _ khm (efw’A/k en-A/k)
— 00
k k k

< lim e~ WAk ALk < lim He_"'A/kH He"'A/kH
T k—oo ||\ ~—~>~— T k—oo

unitar

Akl A b A g
< lim ||e™ /kH < lim (e“("’ /k)) = lim (6“("’ )/k)

k—oo k—oco k—o0

< oI Al Z Aa(n-4)

wobei Apax (77 - A) der betragsmifig grofite Eigenwert von 1 - A ist und p(A) die logarith-
mische Matrixnornﬁ AuBlerdem gilt

Hg(n) = sup(x,n) = sup Tr(pn-A) = Anax(n-A).
zeR peS(C™)

4Fiir jede Matrix X € K"X™ ist |leX|| < e#(X) und p(X) < || X||. Die Definition findet sich im Anhang

B3
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3. Konstruktion und Eigenschaften einer verallgemeinerten Wignerfunktion

Das letzte Gleichheitszeichen ist gerechtfertigt, da 1 - A eine Summe von Operatoren ist,
die insbesondere normal sind. Die Operatornorm eines normalen Operators stimmt mit dem
Spektralradius und dem betragsméfig grofiten Eigenwert iiberein. Damit folgt zun#chst

|W(£)| = |W(V —+ zn)| = |Tr (P eiiV'A‘F"]'A) |

< [pllf|e™ 4| < efrlim@),

Die Spur konnte abgeschétzt werden, da dieser Term die Form eines Frobenius-Skalarproduktes
hatte und dieses ist durch das Produkt der Normen der Argumente beschrénktﬂ

Abschitzung zweiter Teil:

Des Weiteren kann die Integralschreibweise von W abgeschitzt werden: Innerhalb des Inte-
grals steht die Distribution mit kompaktem Tréger W, und der komplexe Exponentialterm.
Da eine temperierte Distribution v € /(X)) C &'(X) abgeschétzt werden kann durch die
Halbnormfamilie p, g(-) ihres Argumentes (vgl. [Werll|[Satz VIIL.5.4, p. 430]), gilt

3deN,C>0: |u(¢)| <C pas(¢p) =Csup [z*DPp(x)|.
reX
Die genaue Definition der Halbnormfamilie, die den Schwartz-Raum zu einem lokalkonvexen
Raum macht, findet sich im Anhang m Da eine Schwartzfunktion (oder Funktion mit
komp. Triger) ¢ € . schueller fillt als jedes Polynom, erfiillt jede Schwartzfunktion eine
polynomiale Abschéitzung der Form

5 - - 5 d/2
3dez, C>0: \¢(m)|§C’(1+||xH ) :
so wie es auch in [DJ69, Ch. 28, p. 134] erldutert wird. Da aber die Multiplikation mit x“

und beliebige Ableitungen Polynome invariant lassen, folgt daraus auch eine Abschétzung
der Fourier-Laplace-Transformation mit (3.4)):

WE)| < C pas (7€)

' B d/2
= C sup [¢*DPe &) < C sup [¢°D7C (1+ i¢]?)" |
geCn geCn

/ 2 d,/2 . . 7
<C'"(1+]€] fiir geeignete C’,d" € N.

Diese Operationen sind legitim, da die alle glatten Funktionen mit kompaktem Tréger aufler-
halb ihres Trégers identisch verschwinden. Man findet also immer, auch wenn die Funktion
innerhalb ihres Trégers exponentielles Wachstum zeigt, ein Polynom, dass eine obere Schran-
ke an die Funktion stellt. Kombiniert man nun beide Abschitzungen, so folgt fiir ein deZ
und ein C' > 0

—~ — - d
W)= IW(E)? < \/C (1+||g||2) - eHr(Im(€))
<VC (1+1e?)" - eratme
2:’5 N———

<eHRr(Im(£)

< C(1+ |¢))NefIrUmE)  fiir N =d/2eN.

5vgl. Anhang|A.1
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3.4. Die Singularitéiten der Wignerfunktion

Somit gilt insgesamt:

W ()] < C(1+ |€])N HrmE),

Nach dem Satz von Parley-Wiener-Schwartz ist der Tréger von W, enthalten in R.
O

Auflerhalb der JNR ist die Wignerfunktion also identisch Null. Es stellt sich somit die Frage
was im Inneren passiert und ob die Wignerfunktion moglicherweise auch dort in groflen Be-
reichen verschwindet. Mithilfe weiterer Abschitzungen der Form lassen sich auch Aus-
sagen iiber die Gréfle und die Lage des singuldren Trégers treffen. Von diesen Abschitzungen
wird an dieser Stelle jedoch abgesehen, da weitere Informationen iiber Singularitéiten in den
néichsten Kapiteln durch andere Methoden gewonnen werden. Unter anderem folgende Ana-
lyse:

3.4. Die Singularitdten der Wignerfunktion

Die Riicktransformation (2.7 gibt eine explizite Form der Distribution an

—
~ iy

W ,(a) = W,(—a) = (21) " W, = (2m)" / de e~ T (g),

also insgesamt

W,(a) = (277)—”/6151--@5” 69 Wy, ... ¢,), acR™ (3.7)

Mithilfe von (3.6) kann die dquivalente Darstellung

Wy(a) = (2m) ™" / dey -+ d&, Tr(p Pa(€)) €6 ~2e(®) (3.8)

benutzt werden, um so die Methode der stationdren Phase fiir oszillierende Integrale zu
verwenden.

3.4.1. Die Methode der stationaren Phase

Diese Theorie beschiéftigt sich mit asymptotischen Integralausdriicken der Form

/g e“ldey - dx,

X
fiir glatte Funktionen f,¢g € &(X) mit Im(f) > 0 im Grenzfall w — 4o00. Dabei ist f
eine Phasenfunktion, wie zum Beispiel f(z) = e*. Wie in [H6r90][VII 7.8] gezeigt wird,
konvergiert solch ein Integral, wenn der Gradient von wf nicht verschwindet, oder anders

gesagt erhalten solche oszillierenden Integrale ihren fithrenden Beitrag an den Stellen an
denen

V(wf)=0
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3. Konstruktion und Eigenschaften einer verallgemeinerten Wignerfunktion

erfiillt ist. Wendet man diesen Formalismus nun auf die Wignerfunktion an, so wird klar,
dass die fithrenden Beitrige von (3.8) genau solche sind mit

Ve((€,a) — Aa(€)) =0 = a— Vera(€) =0
— a=Vel(§) €R™

An diesen Stellen ist also eine Definition als regulére Distribution formal nicht moglich, da
es keine lokal integrierbare Funktion gibt, sodass das Integral iiber das Produkt aus Funk-
tion und Distribution existiert. Der Gradient der Eigenwertfunktionen ergibt jedoch gerade
die Erwartungswerttupel, damit scheint die Wignerfunktion nicht definierte (unendlich hohe
Werte) an den Punkten zu haben, die zum Beispiel in Grafik eingezeichnet wurden.
Dieses Problem wird im Folgenden dadurch umgangen, dass jegliche Wignerfunktionen zu
einer ,echten* Funktion, durch Faltung mit einer Gaulkurve, geglittet werden. Wenn diese
Darstellung nicht erfolgsversprechend ist, wird eine Funktionenfolge verwendet, die gegen
die Distribution konvergiert. Nidheres zu diesem Sachverhalt wird im Kapitel iiber die Vi-
sualisierung der Wignerfunktion erldutert.

Um oszillierende Integrale mathematisch exakt beschreiben zu koénnen ist die Theorie der
Symbolklassen notig, welche in dieser Abhandlung jedoch nicht weiter ausgefithrt wird, da
dieses Thema eine ausgiebige Einfiihrung von Pseudodifferentialoperatoren mit sich ziehen
wiirde. Fiir die hier benotigten Zwecke reichen die angesprochenen Ergebnisse und die Zu-
sammenfassung der Konvergenz oszillierender Integrale vollkommen aus und werden auch
in anderen ingenieurs- und naturwissenschaftlichen Teilbereichen so verwendet.
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4. Die Wignerfunktion einiger Beispiele

Historisch betrachtet waren Orts- und Impulsoperator die ersten Argumente der Wigner-
funktion. In diesem Kapitel wird eine bestimmte Linearkobination dieser Operatoren be-
trachtet. Zunéchst sei jedoch zu den einzelnen Operatoren mehr gesagt, die explizite Form
in Ortsdarstellung lautet:

Der Ortsoperator @, : dom(Q;) — H, Q,|¢) = z;|¢) hat ein kontinuierliches Spektrum
0(Q;) =R, wobei x; eine reellwertige Koordinatenfunktion ist. Dabei ist aufilerdem

dom(Q;) = {|¥) € H :z;[Y) € HV x5}

der dichte Definitionsbereich von @);, insbesondere ist die Forderung der Reellwertigkeit von
x; notwendig fiir die Selbstadjungiertheit von @Q;.

9,
Der Impulsoperator lautet P; : dom(P;) — H, P; |[¢) = —ia— [¢)) und auch sein
Ty

Spektrum ist ganz R. Sein Definitionsbereich
dom(P;) =HNCYH) = {|¢) € H: 3 |¢') und |[¢') sind stetig }

liegt auch dicht in H. Diese beiden Operatoren vertauschen nicht; die kanonischen Kommu-
tatorrelationen lauten

Qi, P;) =1d;;, [Q:i,Q;]=0=][F;, P

4.1. Linearkombinationen von Orts- und Impulsoperatoren

Gegeben sei der Hamiltonoperator des harmonischen Oszillators H; = P? + Q? multipliziert
mit dem Faktor 2 und der Ortsoperator H, = Q). Das Eigenwertspektrum von H; ist aus den
meisten Einfithrungen in die Quantenmechanik bekannt und lautet o(Hy) = 2n+1, n € N.
Folgender Zusammenhang folgt durch elementare Umformungen

2
EHy +nHy = €P? 4 ¢ <Q2 +2 1o+ (”) ) n

2¢ 2) ) 4
—¢e| P2t QJFQQ _f]l—fH’—n—Q &neC
- 25 45 - 1 457 , 7 .

Dabei besitzt der Operator H| identisches Spektrum wie H;. So lautet die Eigenwertfunktion

2
i+, (§m) = E§(2n +1) — Z—E, n €N,

mit erwarteten Singularitdten im Bild des Gradienten. Dieser lisst sich einfach berechnen

durch
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4. Die Wignerfunktion einiger Beispiele

772

OeNp 1 =t 2n+1 h
V)\H1+H2 _ 3 1+He2 _ 4£ . —.
ﬂ/\H1+H2 i

Daraus folgt der Zusammenhang h = ¢2 + 2n + 1 fiir die Erwartungswerttupel. Die Er-
wartungswerttupel sind also in Parabel-Form angeordnet und sind nicht entartet, da sich
die einzelnen Parabeln nicht schneiden. Dieses Beispiel zeigt, wie die Wignerfunktion auch
in unendlich dimensionalen Rdumen (n&herungsweise) entwickelt werden kann. Die graphi-
sche Darstellung dieses Falles ist jedoch nicht einfach méglich und selbst die Methoden der
linearen Algebra konnen nur teilweise herangezogen werden, wenn versucht wird die Diffe-
rentialoperatoren approximativ in Matrixform zu schreiben. Wie im spéteren noch gezeigt
wird, werden grofle Datenmengen bereits bei kleinen Matrixdimensionen erreicht, sodass
dieses Beispiel zwar die Moglichkeit der Darstellung aufzeigt, sie aber in dieser Arbeit nicht
durchgefiihrt wird.

q

4.2. Die Fourier-Transformierte Wignerfunktion fiir Qubits

Eine genaue Einfithrung in die Drehimpulsalgebra folgt im n#chsten Kapitel, jedoch ist
die Matrixdarstellung fiir Qubit-Zustinde und Observablen durch C2-Matrizen anschaulich
genug um einige interessante Beobachtungen bereits jetzt festzustellen. Die Fourier-Laplace-
Transformierte Wignerfunktion ldsst sich schreiben als

3
—~ ig = : 1 ig = 1 ig =
W) ="Tr (p 6_55"’) 3 Tr (]l 6_55"’) —5—5 Z re Tr (Ua 6_55"’)
N a=1 D Y ——
=: 29 :721(1&1 Tr(e 250)
3
L d
~ 6= Y razet

wobei ¢ dem halben Erwartungswert <e*%5'5> fiir p = 1 entspricht. Dieser lédsst sich noch
p

vereinfachen:

.3 3
ig.5 ieF -3 2 fala i
2¢ = <e*§€'0> =Tr (6755-0) =Tr (e = ) =Tr (H 625a0a> i
p=1
a=1

Die &,, a € {1,2,3} sind die Storparameter, an die somit auch keine Konvexititsbedingung
gestellt wird, wie in ([2.11). Wie jedoch in dem Kapitel iiber Stérungstheorie erwéhnt, wird
fir die Darstellung der Wignerfunktion eine reellwertige Stérung aus Sinus und Kosinus
verwendet (€& = (sin(t), cos(t)), t € R), sodass sich die Fourier-Laplace-Transformation zu
einer Fourier-Transformation vereinfacht.

Aufgrund der einfachen Struktur der Paulimatrizen in der Matrixexponentialfunktion fallen

viele Terme weg, wenn man die Spur auswertet]'} Multipliziert man alle erhaltenen Matrizen
aus und fithrt die Abkiirzung [€| = /&7 + &3 + &3 ein, so reduziert sich der Ausdruck zu

COS(H) _ isin(lj‘)&. sin(‘izl)(fzfl,&)
Tr

¢ = : €1 <! N (18 = cos @
2 sin(13) (Cigi462) lg)  ient e 2 )
cos( 5 )+ €]

€] £

1Die Ergebnisse der Matrixexponentialfunktion fiir Paulimatrizen befinden sich im Anhang|[A.1
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4.2. Die Fourier-Transformierte Wignerfunktion fiir Qubits

Dieser ermoglicht es nun die Fourier-Transformierte auf eine exakte Form zu bringen:

3
/W(£ = _szdfa —c05< |> inadfac%(lg)

a=1
€] €Y 3
¢ = & sin €| isin
_cos< |> +ZZ:1 a2|€(| ) ZCOS(2> 2|(£| >Z7“a§a.
. =(r.€)

Dass solche Fourier-Transformationen der Schliissel zur Analyse der Wignerfunktion sind
wird im Folgenden Kapitel erldutert. Kein Computerprogramm geht leicht mit Distribu-
tionen um, jedoch sind holomorphe Funktionen und Matrizen gut implementierbar. Aus
diesem Grund versucht man zunéchst immer solche Funktionen fiir ein bestimmtes Problem
herzuleiten, um dann die Wignerfunktion daraus zu entwickeln und darzustellen.

Ferner erkennt man schnell, dass trigonometrische Funktionen wie Sinus und Kosinus im
Qubit-Fall nicht quadratintegrabel sind und die Fourier-Transformation nicht durchfiithrbar
ist. Dieses Problem wird jedoch durch die Gaufiglittung der Wignerfunktion umgangen, wie
es im Folgenden Kapitel Thema sein wird.
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5. Visualisierung der Wignerfunktion

Zur Visualisierung wurde Wolfram Mathematica 10.4.0.0 - Student Edition|verwen-
det.

5.1. Computeralgorithmus

Da viele Distributionen praktisch nicht graphisch darstellbar sind, wird der Bildbereich mit

2
einer GauBkurve f(&) = e~ 5 gefaltet. Die Distribution wird also, anschaulich gesehen, zu

einer Funktion geglidttet. Dabei ist € ein reellwertiger Parameter und im Grenzfall lim
E— 0O

konvergiert die Gauflkurve gegen die Einsfunktion. Ferner ist die Gaulkurve der Fixpunkt
der Fourier-Transformation, der Parameter € skaliert nur das Ergebnis.

Die Multiplikation mit einer Gauflkurve sorgt auflerdem fiir die Integrabilitéit, die fiir die
Fourier-Transformation benétigt wird. In dem folgenden Mathematica-Code wird der Al-
gorithmus mit der Fourier-Transformierten W (¢) initialisiert und mit solchen Gaukurven
multipliziert. Dieser Ausdruck ist analytisch und konkret durch Funktionen und Matrizen
implementierbar; auch die Multiplikation mit einer Gaukurve f(€) funktioniert analytisch
und ausreichend schnell.

Fourier-(Riick)-Transformationen stellen durch ihre Komplexitit jedoch ein Hindernis dar,
wenn es um handhabbare Laufzeiten geht, denn selbst die schnelle Fourier-Transformation
(FFT = , Fast Fourier Transform*) skaliert mit einer Laufzeit von O(N log(N)) fiir N Dis-
kretisierungspunkte (vgl. [OW12|[p. 19]), was bei einer Anzahl von mehreren hundert Punk-
ten bereits zu signifikant hoheren Laufzeiten fithren kann. Die Fourier-Transformation wird
zudem in zwei Richtungen durchgefiihrt, daher verdoppelt sich die Laufzeitﬂ Die Inverse
schnelle Fourier-Transformation IFFT ist analog aufgebaut, mit praktisch gleicher Laufzeit.
Die Laufzeit der FFT ist jedoch eine untere Schranke fiir die Laufzeit des Programms, wie in
der spéteren Analyse gezeigt wird. Die internen Speichervorgénge in den Zwischenschritten,
das Initialisieren der Arrays und viele weitere Arbeitsschritte skalieren oft linear in N, wenn
nicht sogar quadratisch.

Die Diskretisierung ist in diesem Fall notwendig, da analytische Fourier-Transformationen
von Computern nicht immer berechenbar sincﬂ Wenn der Computer also fiir jeden der dis-
kreten Raumpunkte die FFT durchgefiihrt hat, so wird dieser in einem Array gespeichert.
Schlussendlich wird eine Liste mit 512 x 512 Eintrégen erstellt, jeweils mit den Koordinaten
der Raumgitterpunkte und dem Wert der FFT an dieser Stelle. Mathematica ist dann in
der Lage diese Punkte zu plotten, sodass die Rohdaten folgende Form haben:

Lff. als Mathematica bezeichnet.

?Die Laufzeit des implementierten Codes wurde noch durch weitere Mittel versucht zu senken. Diese zu
erlautern wiirde jedoch eine zu tiefe Einfiihrung in den Grund-Kernel von Mathematica erfordern.

3Es stellt sich als Effizient heraus, eine Diskretisierung in Potenzen von zwei zu verwenden, also N = 2™ -
die Bilder, die in dieser Arbeit zu finden sind, wurden mit 512 x 512-Punkten diskretisiert.
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5.1. Computeralgorithmus

Abbildung 5.1.: Rohdaten einer Wignerfunktion zweier zufillig generierter Observablen

Diese Daten werden dann als 3D-Objekt gespeichert und mit dem Bildbearbeitungs- und
3D-Programm Blender bearbeitet und mit Schatten versehen, um einzelne Details besser
erkennen zu konnen. Es gehen dabei keinerlei Informationen der Bilddatei verloren, die
physikalisch relevant sind. Die gerenderte Wignerfunktion sieht dann so aus:

W(al, az)

Abbildung 5.2.: Gerenderte Rohdaten von zuvor

Da solche Wignerfunktionen auch fiir Observablen dargestellt werden kénnen die keine Mes-
sung reprasentieren, wird kiinftig auf ein Koordinatensystem, so wie es angedeutet wird,
verzichtet und somit wird es auch keine Achsenbeschriftung geben. Bis auf die Drehimpuls-
operatoren folgen keine Wignerfunktionen mehr, die sich auf ein konkretes physikalisches
Problem beziehen und damit keine physikalischen Variablen als Erwartungswerte besitzen,
deren konkreter Zahlenwert eine Bedeutung triige. Durch die gegebene Einfiihrung sollte
jegliche Information, die eine solche Wignerfunktion zeigt - auch ohne Achsenbeschriftung -
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5. Visualisierung der Wignerfunktion

versténdlich sein, da es viel mehr um die qualitative Form der Verteilung geht.

5.2. Laufzeitanalyse

Eine Zusammenfassung des Grundcodes findet sich im Anhang [A72] Im Folgenden werden
die einzelnen Schritte des Codes auf ihre Laufzeit untersucht und im Hinblick auf verschie-
dene Diskretisierungen analysiert. Sieht man von den Grunddefinitionen ab und initialisiert
diese, so verbleiben fiir jede Wignerfunktion 8 Schritte (bzw. 12 Schritte, wenn die Erwar-
tungswerttupel mit eingezeichnet werden sollen). Diese 8 Schritte lauten:

e maxx: Errechnet den grofiten Eigenwert der gewéhlten Matrizen. Es gibt also ein Maf3
fiir die Mindestgrofle der JNR an und somit die Breite der Diskretisierung.

e : Konstruiert den kleinsten normierten Eigenvektor der ersten Matrix.

e rho: Ist der Ketbra (das dyadische Produkt) von 1. Es ist damit der Zustand, auf die
sich die Wignerfunktion bezieht.

e setFourier[N,z]: Initialisiert die Fourier-Transformation. Es diskretisiert auf einem
Quadrat mit Kantenlinge z ein Gitter mit N2-Punkten und packt diese in ein Array.
Als Kantenlidnge x wird dann 2 maxx verwendet.

e whleps, rho|: Ist die Implementierung von W. In dieser Arbeit wird eps = 0.001 ver-
wendet.

e Fou2 ist dann die eigentliche Fourier-Transformation des Arrays von wh in Bezug auf
setFourier.

e wwpoints kombiniert dann die Gitterpunkte des Arrays mit dem jeweiligen Wert der
Fourier-Transformation aus dem Array Fou2.

e pic erstellt einen ListPlot von wwpoints, um die Wignerfunktion dreidimensional dar-
zustellen.

Die einzigen Algorithmen, die nennenswerte Laufzeiten hervorrufen, sind setFourier, wh,
Fou2 und pic. Alle anderen liegen in einem Bereich von 8 - 10~% Sekunden, oder weniger,
da es sich nur um das interne Speichern und Initialisieren einfacher Daten handelt. Sie sind
weiterhin unabhéngig von der Diskretisierung N. pic ist ein Befehl, der zwar eine Laufzeit
von nur tausendstel Sekunden beansprucht, jedoch ist die Darstellungen eines ListPlots mit
1024 Punkten und mehr auf handelsiiblichen Rechnern oft nicht moglich.

Die verbleibenden drei Befehle werden nun genauer untersucht: Sie skalieren nicht linear
in N. Jedoch ist auch die (gewiinschte) Laufzeit von O(N log(N)) fiir die FFT nicht er-
reicht. Alle drei Schritte skalieren ungefihr quadratisch in N, wie die folgenden Graphen mit
quadratischen Fitkurven zeigen.
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5.2. Laufzeitanalyse

setFourier[N] in sek.

0.6

0.5-

04}

0.3}

0.1F

|
200 400 600 800 1000

Abbildung 5.3.: Laufzeit des setFourier-Befehls in abh. von N

wh[0.001,rho] in sek.

20

200 400 600 800 1000

Abbildung 5.4.: Laufzeit des wh-Befehls in abh. von N
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5. Visualisierung der Wignerfunktion

Fou2[whs] in sek.

0.4

03+
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0.1+

1 1 1 1 1
200 400 600 800 1000

Abbildung 5.5.: Laufzeit des Fou2-Befehls in abh. von N

5.3. Fast kommutierende Matrizen

Die gesamte Betrachtung bezog sich bis jetzt auf nicht kommutierende Matrizen, da diesen
kein gemeinsames System aus Eigenvektoren zugeordnet werden kann, dass beide simultan
diagonalisiert. Natiirlich funktioniert der gezeigte Algorithmus auch fiir kommutierende Ma-
trizen und das Ergebnis stimmt mit den Erwartungen iiberein: Man erhélt separate d-Peaks
(gegliittet also Gaukurven) an den jeweiligen Erwartungswerttupeln, wie zum Beispiel hier
gezeigt fiir die Matrizen

-1
A:

0 0 1 0
1 0|, B=|0 0 0 |, 0p(4,B)={1,0,-1}
00 0 0 -1

0
0

mit einer trivialen Wignerfunktion

Abbildung 5.6.: Wignerfunktion zweier kommutierender Matrizen

die Erwartungswerttupel liegen auf beiden Achsen, jeweils bei 1, 0 und -1. Eine interessante
Beobachtung macht man jedoch, wenn man fast kommutierende Matrizen betrachtet. Das
sind Matrix-Tupel der Form
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5.4. Die Drehimpulsalgebra und Qubits

[A,B]=0, B :==B+eC = [A,B']=[A,B]+[A4,e C] =¢[A,C], A,B,C e R(C"),
also kommutierende Matrizen mit einer kleinen Stérung, sodass der Kommutator beliebig

klein gewahlt werden kann. Im Folgenden dargestellt fiir die Werte e = 0.01, 0.05, 0.1 und
0.2:

= &

(a) e =0.01 (b) e = 0.05
(c)e=0.1 (d) e =0.2

Abbildung 5.7.: Wignerfunktion fast-kommutierender Matrizen

Man erkennt sehr anschaulich, wie sich die inneren Strukturen ausbauen, wenn die Stérung
zunimmt. Der Storparameter hebt die Entartung des Systems langsam auf, dadurch entste-
hen diese nicht-trivialen Erwartungswerttupel.

5.4. Die Drehimpulsalgebra und Qubits

Die Drehimpulsalgbra beschéftigt sich mit dem Drehimpulsoperator L = @ X P, seinen
Komponenten L, Ly, L., dem Operatorquadrat L? = L2 + Lz + L? und den jeweiligen
Kommutatorrelationen. Die einzelnen Komponenten des Drehimpulsoperators vertauschen
nicht, es gilt [Ly, L,] = —iL, modulo zyklischer Permutation der Menge {z,y,z}. Ziel
dieses Unterkapitels ist es also nun eine Wignerfunktion fiir zwei Drehimpulskomponenten
zu entwickeln. Zeichnet man die z-Richtung aus, so definiert man die Leiteroperatoren:

Ji:Jwﬂ:Jy:—i<y%—z§y)qn'(z%—x%) mit Ji=J+

1 —
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5. Visualisierung der Wignerfunktion

J? kommutiert mit J,, sodass eine gemeinsame Basis aus Eigenvektoren gewihlt werden
kann. Der Darstellungsraum der irreduziblen Darstellungen der Drehimpulsalgebra SU (21 +
1) ist C2*1, sodass {|7,m)};men € C*+1 als die Menge der gemeinsamen Basiszustinde
von J? und J, gewiihlt werden kann. Sie erfiillen die folgenden Eigenwertgleichungen

J2|j7m> :j(j+1)|]am>a Jz|.77m> :m|]7m> vj € N/Qa m e {_j>_j+ 1; aj_ 11j}7

wodurch sich die Matrixelemente der einzelnen Operatoren wie folgt berechnen lassen:

(G,m|J |7, m"y = m & 6mms

<j,m|J2\j/7m/> =0+ 1) 6j7j’5m,7n’-

Beispielsweise sind die beiden Matrixdarstellungen von J, und J? fiir die Quantenzahl j =
3/2 gegeben durch

3/2 0 0 0 100 0

0 1/2 0 0 0100
J. = / ) J2:§

0 0 -1/2 0 4o 010

0 0 0 —3/2 000 1

Eine dhnliche, aber etwas aufwindigere Rechnungﬁ liefert die Matrixelemente der Leiter-
operatoren und dadurch eine explizite Form von J, und Jy:

Gom| il my = /(G —m)(G +m —1) 6 jGmitme
Gom|J_lj’m/y = /(G —m+1)(j +m) 6 0m—1,m

Fiir das Beispiel j = 3/2 also

0 V3 0 0
g, = 0 0 2 0 _gt
0 0 0 V3
0 0 0 0
und somit fiir die Drehimpulskomponenten

0 V3 0 0 0 V3 0 0
lex/ﬁozoJ:j—\/?io2o
210 2 o V37" 2l 0 -2 0o V3
0 0 V3 0 0 0 —3 0

4siehe z.B. [Werl6][Kapitel 5] und [HWO03|[p. 161 fF.].
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5.4. Die Drehimpulsalgebra und Qubits

5.4.1. Die Wignerfunktion fiir Qubits

Betrachtet man nun den Fall eines Spin 1/2 Teilchens, so untersucht man den Fall eines
Qubits mit den moglichen Zustédnden | 1) und | ] ). Durch die Darstellung der Drehimpul-
salgebra sind die Spin-1/2 Observablen gegeben durch:

1 0 1/2 1 0 —i/2
Jp = —01 = / und Jy, = -0y = i
2 /2 0 2 i/2 0

Die Eigenwerte beider Matrizen sind j:% mit den Eigenvektoren

~ L
[t ={ ] =
V2

und [t )=[ V2], [12)=

Eaic
S-Sl

Um zu zeigen, dass die Wignerfunktion tatséchlich die exakten Marginalien ergibt, eignet
sich der Qubit-Fall besonders gut, weil es nur zwei mogliche Messergebnisse gibt. Im Folgen-
den sind die Wignerfunktionen fiir die Zustédnde p; = | T1 )(T1 | und p2 = | T2 ){ T2 | gezeigt.

(a) Zustand pq (b) Zustand p2

Abbildung 5.8.: Wignerfunktionen eines Qubits fiir unterschiedliche Zusténde

Die Marginalverteilungen erhélt man nun, wenn eine der beiden Variablen ausintegriert wird.
Bei der diskreten Fourier-Transformation die verwendet wurde entspricht das der Summe
der einzelnen diskreten Werte in einer bestimmten Richtung. Im Folgenden dargestellt durch
die Messung .J, in blau und Jy in rotﬂ

5Die Einteilung der Abzisse ist dabei, fiir alle Marginalverteilungen, durch die Diskretisierungspunkte gege-
ben und somit physikalisch nicht aussagekriftig. Die Umrechnung erfolgt durch den gréfiten Eigenwert:
Die 512 Punkte entsprechen dem grofiten Eigenwert der beiden Matrix mal vier.
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5. Visualisierung der Wignerfunktion

20 30

(a) Zustand p1 (b) Zustand p2
Abbildung 5.9.: Marginalverteilungen der Messungen J,, (blau) und J, (rot)

Diese Verteilungen sind physikalisch sinnvoll, da die Messung J, im Zustand p; scharf und
Jy vollstédndig unbestimmt ist. Umgekehrt ist J, im Zustand p, vollstéindig unbestimmt,
wiéhrend J, scharf ist. Die Peaks befinden jeweils bei einem Erwartungswert von 1/2, was
man dadurch erkennt, dass die gesamte Abzisse einer Linge von 2 maxx = 2 1/2 = 1 in
positive und in negative Richtung entspricht. Der Wert N = 256 entspricht also einem
Erwartungswert von Null, N = 128 und N = 384 entsprechen damit analog 1/2. Dass es
sich hier tatséchlich um Gauflkurven handelt, die im Falle ¢ — 0 gegen die Dirac’sche -
Distribution gehen, ist noch zu zeigen. Die Fourier-Transformation wurde im vorigen Kapitel
bereits berechnet:

W\(E)—cos(m) iiradgac%(m)

Benutzt man nun die Riicktransformationsformel, so ist die doppelt-transformierte Wigner-
funktion im Qubit-Fall:

o) = 2r) Wy () = [ dglcos('g') iirdgacos('ﬁ')]e—w

a=1

/dfe z(Eu)COS<£> i Zra/dé —i(€,a) % COS(|§|)

Tauscht man nun die Variable —a + a und multipliziert mit (27) =3, so werden die Integrale

zu Fourier-Riicktransformationen. Ferner wird die fundamentale Identitdt (D f(x))(t) =
(it)*f(t) (vgl. [Werll]|[Lemma V.2.4]) benutzt; somit gilt
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5.4. Die Drehimpulsalgebra und Qubits

Wyla) = s R/ dg /&) cos<'52'> - oo z: - R/ ¢ ¢ ’a>dzacos<§>
D) (9
=771 <cos(|§|)> (@) —i ;r,}(iaa)y* (Cos<§|>) (a)
:IMMlIiZ»=I@JO+aﬂm%+aﬂ@%+aﬂ@%). (5.1)

Es wurde dabei verwendet, dass sich W\(S) durch den Koeffizientenvektor r in direkte Be-
ziehung zu den Erwartungswerten der einzelnen Spin-Messungen setzen kann, durch

= DTy(1) + 62 Tr(oy) = 7.
2 ——

Der Faktor mit dem Skalarprodukt aus r und a ist dabei auch physikalisch notwendig.
Stiinde dieser dort nicht, so wiren die Wignerfunktionen aller Qubits - also unabhéngig
ihrer Koeffizienten in der Dichtematrix - gleich. Physikalisch relevant ist nur der Winkel
zwischen Erwartungswerttupeln und dem Koeffizientenvektor: Hat also der Qubit eine ge-
wisse Symmetrie bzgl. dieser Grofle, so trigt auch die Wignerfunktion diese Symmetrie, da
sich das Skalarprodukt aus r mit der jeweiligen Variable sowohl in der Wignerfunktion, als
auch in der Fourier-Transformation findet.

Die komplette Auswertung der Qubit-Wignerfunktion reduziert sich also auf die Berechnung
von Z(a). Da dieses Integral nur von dem Betrag von & abhiingt, scheint es sinnvoll zu sein
Kugelkoordinaten zu verwenden:

&1 = rsin(0) cos(¢),
& = rsin(f) sin(¢),
&3 =1 cos(0).

Somit transformiert sich das Integral zu

0o 27

1 [ . ‘ |
I(CL) — (27T)3 /d’l" / d¢ / do 7"2 sm(9) COS(%) ezr(a;; cos(0)+sin(0) (a1 cos(¢p)+az sm(g{)))).
0 0 0

Dieses Integral ist nun jedoch nicht trivial zu 16sen, in der Tat stellt sich selbst die Konver-
genz als fragwiirdig heraus. Der folgende Satz iiber die Fourier-Transformation sphérisch-
symmetrischer Funktionen erweif3t sich als hilfreich:
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5. Visualisierung der Wignerfunktion

Proposition 5.1. Sei f € .#(X) eine radiale Funktion, sprich f(x) = f(|z|). Dann ist
Fourier-Transformierte f(€) auch eine radiale Funktion und es gilt

. R AN
= /f(a:) e 28 dgp — /@(T)Wrn_l dr, (5.2)
0

wobei die J,(z) die Bessel-J-Funktionen erster Gattung sind. Es wird folgende Konvention
verwendet:

n > —1. (5.3)

Ist n keine natiirliche Zahl, so wird fiir n! = T'(n+1) = n I'(n) die Gammafunktion benutzt.
Beweis. Der Beweis wird in [Pin02][Ch. 2, Prop. 2.6.8, p. 157] gezeigt. O

Man erkennt schnell die unterschiedliche Konvention der Fourier-Parameter. Dieser Um-

stand wird durch das Multiplizieren mit einer Eins der Form :—g’; umgangen.

Wendet man diesen Satz auf f(7) = cos(7), mit 7 = £ an, so gilt:

\]

Z(a) = (27)~ / cos,('S') ~2rie =) gg B2 (97 37 G W#dﬁ
0

R™

2,/a42

Die Berechnung der Bessel-J Funktion erfolgt separat:

l\'JH

(
= (277)_3\/%7005( J%(ﬂa') rdr (27r)_3\/§ﬁ 7cos<r) Mﬁ dr.
0 0

tla]\2F3 et ;
(i) =S CE) Ly Gl

7! = 221 V2 jIT(j + 5+ 1) /3lal
(5la])+!

Il
[\.)
—_
E)
(¢
—~
I
~—
\V]
&
et
[
+
|
=
w
=
—
—
[
SN—
—
7 N
DN | =
N——
Il
B

_ 2 i(—l)j (5la])®+!
mrlalis (j(j—l)(j—?)-ﬂ)((ﬁ;) (3‘;)2>

227 Faktoren
(5la))>*t _sin(5|al)

2 oo
~Vrrla \JZ @+ = il

Dieses ergibt eingesetzt in die obere Gleichung:
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5.4. Die Drehimpulsalgebra und Qubits

Dieses Integral divergiert. Es wird die folgende Eins verwendet lim e ae =1 Va,r € R,
g’ =00
um das Integral in eine Folge konvergenter Integrale zu schreiben, die gegen ein divergentes

Integral konvergieren.

1 7 -
Z.(a) := (27T)32|a|8|8a| (—2 cos(%) cos(g|a|)e’47> dr, € >0
0
—2n) 2 ra(1 4 elal) (_e—%<|a\+1)2)
2|a| O|al
11 e 2 ’
= (27)73m§\/§6’%ff(|“|“) (1+|a| + (la| — 1) elols), =&t
a

1
= (277)_37\/7? —
4laf /&3
Die 4-Distribution besitzt mehrere eindimensionale Représentationen durch Funktionenfol-
gerﬂ Die folgende erweif3t sich als hilfreich:

_ (al+1)?
4e .

(1+al+ (ja|—1) e %) e

‘22

d(z) = lim i,

1
e—+0 24/me c
Um diese Funktionenfolge nun auch dreidimensional, also fiir einen Vektor @, korrekt be-
schreiben zu konnen wird folgende Rechnung angewendet, die durch den Betrag des Argu-
mentvektors || = r vereinfacht werden kamﬂ

1 22 42 22 2

1 r
= — lim — ¢ Tre dte 4F = |lim ——— ¢ 1c,
§(x) = 6(x)d(y)d(2) Jim (2\/7?5)36 we dme 4 Jim (7r5)3e T
Damit ldsst sich der Grenzwert ausfithren zu
1 1 (lal+1)? _<4\a\—<4\a|+1>2>

S Te(e) = i Tele) =

et (0 e

(la|+1)2 _(a|-1)?
4e

Wum-k+m—m

1 1
=50 47|a] 8y/m3e3

= ﬁa‘ (la| + 1)d(la| + 1) +(la] — 1)é(jal — 1)

=0, weil |a|4+1#£0

6 sieche http://functions.wolfram.com/GeneralizedFunctions/DiracDelta/09/ (Stand: 28.07.2016).
7 Dass es sich bei dieser Funktion tatsichlich um eine Folge handelt, die in Kugelkoordinaten gegen die
¢-Distribution konvergiert, wird im Anhang@gezeigt.
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5. Visualisierung der Wignerfunktion

Insgesamt folgt damit fiir die Wignerfunktion:

(la| = Dé(lal - 1)

4r|al

W,(a) = (1 +ai1(o1), +az{02), +as (03>p) . (5.4)
Dieser Term mag zunéchst verwundern, da es so aussieht, als wéire die Funktion identisch
Null. Plottet man jedoch die Funktionenfolge, die gegen diese Funktion (Distribution) kon-
vergiert in Abhéingigkeit des Betrages |a|, so erkennt man schnell die Form einer Gaufikurve,
die gegen eine d-Distribution konvergiert, die jedoch - je nach Richtung in der man sich der
Singularitit nihert - unterschiedliche Vorzeichen besitzt. Hier gezeigt fiir ¢ = 1073:

Wp(lal)

500 -

[al

-500r

Abbildung 5.10.: Qubit-Wignerfunktion in Abhéngigkeit des Argumentbetrages

Der distributionelle Charakter der Wignerfunktion wird an dieser Stelle besonders deutlich.
Nichtsdestotrotz erhilt man die korrekten Marginalverteilungen aus dieser Distribution:

5.4.2. Die Marginalverteilungen im Qubit-Fall

Um die Marginalien, beispielsweise fiir die Variable a;, aus diesen Funktionen zu errechnen
gibt es zwei Wege: Entweder man setzt bereits in die jeweils anderen Variablen gleich
Null und fiihrt das Integral aus, oder man integriert sie zukzessive aus aus. Im Folgen-
den wird der erste Weg gezeigt:

Werden die Variablen as = a3 = 0 gesetzt und die Vorfaktoren einer eindimensionalen
Fourier-Transformation gewéhlt, so folgt bereits in (5.1]) die Formel:

P,(ar) = W}!d& gikion cos(52>. (5.5)

Die Fourier-Transformation ist im distributionellen Sinn fiir den Kosinus defininiert durch
die Identitét

R/cos(at)eii“tdt =27 (6(w +a) ;— Ow = a)) .

Damit lasst sich die Marginalverteilung schreiben als
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5.4. Die Drehimpulsalgebra und Qubits

P,(a1) = —(1 -(1-25:1)7”1) /dfl eira cos(%l)
R

= %(1 +ay (01)) <6 (a1 + %) +0 (a1 - %)) : (5.6)

welches die korrekte Form der Verteilung ist. Die Rechnung kann analog fiir as und as
durchgefiithrt werden. Die zweite Variante wird an dieser Stelle Stelle nicht gezeigt, weil die
Integrationen nicht analytisch 16sbar sind.

5.4.3. Systeme mit beliebig hohem Drehimpuls

Der zuvor besprochene Fall lidsst sich nun auf den Fall j > 1 anwenden. Die Wignerfunktion
liefert in jeder Richtung die exakten Marginalverteilungen - nur ist das bei hohen Drehimpul-
sen nicht mehr trivial zu erkennen. Aus diesem Grund werden die Wignerfunktionen sowohl
fiir einen bosonischen, als auch fiir einen fermionischen Fall aufgezeigt und die Marginalien
fiir beide Beispiele angegeben.

Bosonischer Teil

Fiir j = 1 betrachtet man ein bosonisches System. Die irreduziblen Darstellungen der j = 1-
Drehimpulsalgebra sind durch C3*3 Matrizen gegeben. Die Wignerfunktion und die Margi-
nalverteilungen haben folgende Form:

Abbildung 5.11.: Wignerfunktion fiir j = 1
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5. Visualisierung der Wignerfunktion
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Abbildung 5.12.: Marginalien fir j = 1

Man erkennt drei mogliche Erwartungswerte durch die rote Messung J, und einen Erwar-
tungswert durch die blaue Messung J,, was physikalisch korrekt ist, da die Wignerfunktion
im Eigenzustand von J, prapariert wurde. Die Marginalien sind im Grenzfall ¢ — 0 wieder,
analog zum Qubit-Fall, Dirac’sche d-Distributionen und integriert man mit Mathematica
numerisch iiber diese Kurven, so erhélt man den Flidcheninhalt Eins mit Abweichungen un-
terhalb von einem Prozent. Die Peaks befinden sich bei den Werten £1 und 0, die Abzisse
entspricht dem Intervall [—2, 2].

Fermionischer Teil

Die gleiche Analyse wird nun noch fiir j = %, also ein Fermion, durchgefithrt. Die dar-

stellenden Matrizen sind 25 + 1 = 10 dimensional und enthalten dementsprechend viele
Erwartungswerte. Diese erkennt man auch (wenn auch an den Seiten sehr schwach) durch
die rote Messung. Die blaue Messung ist dagegen wieder scharf:

Abbildung 5.13.: Wignerfunktion fiir j = 9/2
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5.4. Die Drehimpulsalgebra und Qubits

0.30 -

J I Vi

Abbildung 5.14.: Marginalien fiir j = 9/2

Es lassen sich natiirlich auch Linearkombinationen dieser Messungen durchfiithren. In der
folgenden Draufsicht sind die Messungen der vorigen Marginale eingezeichnet (blau und rot)
und zudem eine griine Messung % (Jz + Jy), die eine Superposition der beiden darstellt.
Die Marginale dieser Messung werden dazu angegeben:

Abbildung 5.15.: Draufsicht der j = 9/2 Wignerfunktion mit Messrichtungen
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5. Visualisierung der Wignerfunktion
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Abbildung 5.16.: Marginalverteilung der Superpositionsmessung

Je hoher die Drehimpulsquantenzahl j jedoch gesetzt wird, desto hoher muss die Auflésung
der FFT sein, um einzelne Details zu erkennen. Im Vergleich der Qubit-Wignerfunktion mit
der Spin-9/2-Wignerfunktion erkennt man diesen Sachverhalt besonders gut: Die Margina-
lien erscheinen, in einzelnen Punkten, fiir den letzteren Fall nicht einmal mehr glatt. Der
néichsthohere fermionsiche Spin, j = 11/2, wiirde mit 512 x 512 Diskretisierungspunkten
zwar dhnlich aussehen, jedoch wiirden die Marginalien in den dufleren Bereichen sowohl viel
zu klein (im Vergleich zu den Hauptpeaks) sein, als auch ,kantig®, wie man es in folgendem
Bildausschnitt erkennen kann.

Erwartungswert
far j= -11/2

A JLU UL

100 200

Abbildung 5.17.: Seitenausschnitt der j = 11/2-Marginalien nach J,-Messung

Die gezeigte Wignerfunktion stellt also das Ende der Darstellbarkeit dieses Algorithmusses
dar, die mithilfe nicht professioneller Rechner errechnet werden und die der Anschauung
halber niitzlich sind. Fiir rechenstarke Computer-Cluster ist die Darstellungsgrenze natiirlich
beliebig hoch zu setzen.
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6. Zusammenfassung

Durch die Annahme, dass die Wignerfunktion auch eine Distribution sein kann, haben
sich neue Moglichkeiten aufgetan, die verschiedene Analysemethoden nach sich gezogen
haben. Eine verallgemeinerung der Wignerfunktion ist jedoch nicht neu, denn viele an-
dere Wissenschaftler haben bereits Artikel zu dieser Fragestellung verdffentlicht. In den
Papern [CS85], [SCO05], [LP97] und [SW93] ist eine dhnliche Herangehensweise geschildert,
jedoch werden den Wignerfunktionen in diesen Arbeiten nie Eigenschaften von Distribu-
tionen zugewiesen. Im ersten dieser Paper wird auch der Fall einer Wignerfunktion fiir ein
Spin-1/2 Teilchen berechnet. Die Rechnung erfolgt insofern analog, als dass der selbe Ansatz
fiir die Wignerfunktion gewéhlt wurde und die Berechnung iiber die Fourier-Transformation
erfolgte, jedoch wurden nur zwei Freiheitsgrade zugelassen. In dieser Arbeit wurde dieses
Problem mit einer Dimension mehr gelost. Uber beide Wege errechnen sich die gleichen
Marginalverteilungen, wie sie fiir die Qubits bekannt sind.

Die Tatsache, dass jegliche Distributionen, insofern sie nicht génzlich singulér sind, durch
Gaufglattung zu Funktionen werden, erméglicht es analytische Ausdriicke fiir Wignerfunk-
tionen in Bezug auf alle moglichen hermiteschen Matrizen, ob sie eine physikalische Messung
darstellen oder nicht, zu errechnen. Auch die endliche Anzahl der betrachteten Observablen,
die man an einem Zustand betrachet, kann beliebig hoch sein. Nur lassen sich die Ergeb-
nisse im Falle von drei und mehr Observablen nicht mehr in Form von Graphen darstellen.
In [SC05] wird sogar eine Methode angesprochen, mithilfe derer man unendlich viele Ope-
ratoren betrachten kann.

Insgesamt lésst sich also zusammenfassen: Auch wenn die Quantenmechanik die gleichzeitige
Messung mancher Aspekte eines Systems verbietet und somit als statistische Theorie bekannt
ist, so erhélt man trotzdem oftmals exakte Ergebisse, wenn andere Aspekte unbeobachtet
bleiben. Die Wignerfunktion zeigt diesen Zusammenhang der Unschérfe sehr anschaulich
und die blofle Tatsache, dass sie sich fiir beliebige Systeme und beliebige Messungen kon-
struieren lésst, hebt einmal mehr hervor wie erfolgsversprechend die Quantentheorie ist und
dass sie Zurecht einen der Grundpfeiler der modernen Physik bildet.
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A. Anhang

A.1. Topologien und Formeln

Der Raum der glatten Funktionen &

Auf dem Raum der glatten Funktionen C'*°(X) erzeugen die Halbnormen

prm(p) = sup |D%(x)[, m € N,aeN"
zeK,|a|<m

fir K C X kompakt, eine lokalkonvexe Topologie. Zusammen mit dieser Topologie wird der
Raum als &(X) notiert. (siehe [Jan71][§11, p. 49])

Der Schwartz-Raum ./

Der Schwartzraum .#(X) wird durch die Halbnormfamilie

P, (i) = sup [z*DPp(z)|, aeN",
e

oder vollkommen analog mit einem Polynom Q(z)

Pa.@(p) = sup |Q(x)(D%p) ()],

rzeX
zu einem lokalkonvexen, metrisierbaren Raum - einem Fréchet-Raum. (siehe [Hor90|[Ch. 7,
p. 160])
Der Raum der glatten Funktionen mit kompaktem Trager 2

Durch die Topologie, die von den Halbnormen

pPrm(p) = sup [D%(z)|, meN
zeK,|a|<m

induziert wird, wird der Raum C°(X) zu Z(X). (siehe [Jan71][§12, p.51])

Abschatzung von Distributionen

Betrachtet man nun die topologischen Duale dieser Rédume, so ist eine Bemerkung fiir alle
Réaume analog: Fine stetige Linearform auf jedem dieser drei Testfunktionenrdume, kann
betragsweise durch die Halbnorm des Argumentes und einer positiven Konstante abgeschétzt
werden. Ist zum Beispiel u € .%/(X), so gilt

lu(p)| < C pas(p), mit C > 0.

Beweis. Der Beweis findet sich fiir die einzelnen Réume in |[Jan71|[§14, Satz 14.1, p. 60]
und |Jan71) [§37, Satz 37.7, p. 174] O
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A.1. Topologien und Formeln

Die Topologie der Dualrdume lisst sich (je nach nétigem Konvergenzgrad, der in der Theorie
partieller Differentialgleichungen wichtig wird) durch die starke Topologie, oder die Topologie
der schwach-*-Konvergenz definieren. Diese werden im Folgenden charakterisiert.

Operator- und Dualraumtopologien

Sei H ein normierter Raum und A € L(H) ein linearer, beschréankter Operator. So kann
man H und H’' mit verschiedenen Topologien austatten, die durch (Halb-)Normen erzeugt
werden. Jede der folgenden Topologien besitzt eine lokalkonvexe Struktur:

e Die Normtopologie wird von der Operatornorm |A|| = sup | Az| auf H induziert.
z€H,||z]|=1

e Die Halbnormen p,(A) := ||Az|| induzieren die starke Operatortopologie auf H'.

o Die schwache Operatortopolgie wird von den Halbnormen p,, ,(A4) := [(Az, y)| induziert
und topologisiert H.

e Die schwach-*-Topologie wird durch das Halbnormsystem
Dy oz, (f) = max(|f(z1)],- -, |f(zy)]) definiert und macht H’ zu einem lokalkonve-
xen Raum.

Der Raum der Distributionen 2’

Eine Distribution v auf X ist eine lineare Abbildung von Z(X), sodass fiir jedes kompakte
K C X Konstanten C und m existieren mit

[u(@)| < C prm(p) =C  sup  |[D%(x)] V¢ € Z(K).
zeK,|a|<m
Die kleinste Konstante m, fiir die diese Gleichung fiir alle kompakten K gilt, heiit Ordnung
der Distribution.
Der Raum der Distributionen mit kompaktem Trager &’

Der Raum der Distributionen mit kompaktem Tréger (also die Menge der Distributionen,
deren Tréger ein kompakter Raum ist) ist nach [Hor90|[Theorem 2.3.1 p. 44] isomorph zu
&'(X).

Die logarithmische Norm

Die logarithmische Norm einer quadratischen Matrix ist keine Norm im strengen Sinn. Sei

A € K™™ und ||-|| die induzierte Matrixnorm, so ist
. I+ RA| -1
A):= lim ———
u(4) B 4o h

die logarithmische Norm von A.

Frobenius-Skalarprodukt

Das Frobenius-Skalarprodukt zweier quadratischer, komplexwertiger Matrizen A und B ist

(A,B) =Tr (A'B).
Es gilt die fundamentale Abschitzung

{4, B)| < Al | B]|
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A. Anhang

Das Matrixexponential der Paulimatrizen

Um unnotigen Rechenaufwand zu vermeiden ist es hilfreich die Matrixexponentialfunktion
der Paulimatrizen direkt auszuwerten. Diese lauten:

cosh(z) sinh(z)

i) ¥ =
sinh(z) cosh(z)
i) . cosh(z) —isinh(z)
ii e =
isinh(xz)  cosh(x)
e® 0
i) emon =
0 e@

Die §-Distribution in Kugelkoordinaten

Um zu zeigen, dass eine Folge von Funktionen f,(x) gegen die é-Distribution konvergiert,
miissen zwei Identitéten erfiillt sein:

i) lim [ fu(z)de=1 und i) lim [ fo(@—xo)p(x — mo)de = p(x0) Ve € E&RY)

n— o0 n— o0
RN RN

Da sich jede glatte Funktion durch ihre Taylorreihe approximieren lésst, ist der zweite Teil
dquivalent dazu, dass das Integral tiber die Funktionenfolge mit jedem Polynom verschwin-
det, wenn als Entwicklungsstelle £y = 0 gewahlt wird. Wahlt man die Kugelkoordinaten
(N = 3) und die Funktionenfolge, wie sie im Qubit-Kapitel eingefiihrt wurde, so ergibt sich:

27 iy [e%s) 0
1 r2 47 r2
il lim d /d@/drsin 0)r? rkF ———¢ % = lim 7/dr rht2e i
) e%+00 (bo ) (6) 8¢/ (me)3 e=+0 8, /(me)3 )

3+ k :
— lim ok+2 S35 p (+) x lim e ~% =0 Vk € N*.

1
e 0 2, /mV/e3

2 e—+0

Fiir den Fall k£ = 0 ergibt sich die Frage der Normierung - sprich i). Wertet man die soeben
erhaltene Gleichung fiir kK = 0 aus, so erhélt man:

)= .

5 (3)_ o 2VIVE

1
. 22 5 F — —
02 /e 10 2 /B

Es sind also beide Voraussetzungen erfiillt.
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A.2. Mathematica-Code

Mathematica-Code zur
Bachelorarbeit
“Wignerfunktion fur beliebige
Operatortupel”

Grunddefinitionen

Needs [ "Developer™"];
SetDirectory[NotebookDirectory[]];

<< "qimaph.m";

srange[n_] := Range[-(n-1) /2, (n-1) /2];
NCh = N@eChop [#1, 2 $MinMachineNumber] &;
SetAttributes[NCh, Listable];

tpa = ToPackedArray[NCh[#], Complex] &;

setFourier[n_, pmax_] := (nn =n;
6x = N[n/ pmax]; xs = 6x * srange[n];
ép=2n/ (nn«*d6x); ps = Sp +srange[n];
faselIn = tpa@Exp[in (1-1/n) xRange[0, n-1]];
faseOut = tpae (Exp[-i7 (n/2-1+1/(2n))] * faseIn);
fase2In = tpa@Outer[Times, faseIn, faseln];
fase20ut = tpa@Outer[Times, faseOut, faseOut];
)i
Foul[list_] := faseOut * Fourier[tpa[faseIn* list], FourierParameters » {-1, -1}];
Fou2[array_] :=
fase20ut * Fourier[tpa[fase2In x array], FourierParameters » {-1, -1}];
make[dim_, n_] := (aas = Table[randomH[dim], {n}];);
make[dim_] := make[dim, 2];
wh[eps_] :=whs =
tpa@outer [Exp[-eps * (#1°2+#2°2)] » Tr[MatrixExp[i {#1, #2}.aas]] &, xs, xs, 1];
wh[eps_, p_] :=whs = tpae@
Outer[Exp[—eps * (nlAZ +tt2"2)] * Tr[p.MatrixExp[i {#1, #2}.aas]] &, xs, Xs, 1] ;

angles = Range[0, x, .01];

dirvecs = Transpose[{Cos[angles], Sin[angles]}];

evpoints[mats_, vec_] := Module[{evs = Normalize /@ Eigenvectors[vec.mats]},
Outer [Chop[Conjugate[#1] .H2.#1] &, evs, mats, 1]];

evcurves [mats_] := Flatten[evpoints[mats, #] & /@dirvecs, 1];

to3D[points_, z_] := Point[Append[#, z]] & /@points;

viz[mats_, z_] := Graphics3D[to3D[evcurves[mats], z]]

Printed by Wolfram Mathematica Student Edition
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Mogliche Wahl der Matrixtupel

randomAas := make[3];
angmom : =
(aas = {{{0, 0, 0}, {0, O, i}, {0, -, O}}, {{O, &, O}, {-&, O, O}, {0, O, 0}}};)
quadri = (a1 = .1 xDiagonalMatrix[{1, 0, -1}];
a2 = {{0, randomC, randomC}, {0, O, randomC}, {0, O, O}};
aas = {al + a2 +a2f, —a1+ia2—ia2*};);

Konkrete Form der gewahlten Matrizen

{aas[[1]] // MatrixForm, aas[[2]] // MatrixForm}

0.1 0.997978 +0.5102251 -0.131231-1.22181
{ 0.997978 -0.510225 1 0. 1.03932-2.08745 1 ],
-0.131231+1.22181 1.03932 +2.087451 -0.1
-0.1 -0.510225+0.997978 1 1.2218 -0.1312311
[0.5102250.9979781'L 0. 2.08745+1.03932]’LJ
1.2218 +0.131231 1 2.08745-1.03932 1 0.1

Printed by Wolfram Mathematica Student Edition
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Visualisierung der Wignerfunktion (ohne
Erwartungswerttupel)

maxx = Max[Norm /@ aas];
Y = Eigenvectors[aas[[1]]][[1]] // Normalize;
rho = ketbral[¥];
setFourier[512, 2 xmaxx];
wh[.001, rho];
ww = Fou2 [whs];
wwpoints =

Flatten[Table[{ps[[i]], ps[[j]], 100« Chop[ww([[i, j]]1]}, {i, nn}, {j, nn}], 1];
picl = Show[ListPlot3D[wwpoints, PlotRange - All,

ImageSize » Large, Boxed -» False]]

Printed by Wolfram Mathematica Student Edition
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Visualisierung der Wignerfunktion (mit
Erwartungswerttupel)

maxx = Max[Norm /@ aas];
Y = Eigenvectors[aas[[1]]][[1]] // Normalize;
rho = ketbral[¥];
setFourier[512, 2 xmaxx];
wh[.001, rho];
ww = Fou2 [whs];
maxz = Max@Flatten@Chop@ww;
wwpoints =
Flatten[Table[{ps[[i]], ps[[j]], 100 xChop[ww[[i, 111}, {i, nn}, {j, nn}], 1];
pic2 = Show[ListPlot3D[wwpoints, PlotRange - All,
ImageSize -» Large, Boxed -» False], viz[aas, 100 maxz]]

Printed by Wolfram Mathematica Student Edition
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