

Atom interferometers in weakly curved spacetimes using elastic scattering

DPG Spring Meeting 2023 - SAMOP

Michael Werner¹ and Klemens Hammerer¹

¹Institut für Theoretische Physik and Institut für Gravitationsphysik (Albert-Einstein-Institut)
Leibniz Universität Hannover

Motivation

Atom interferometers are tools that can be used to measure:

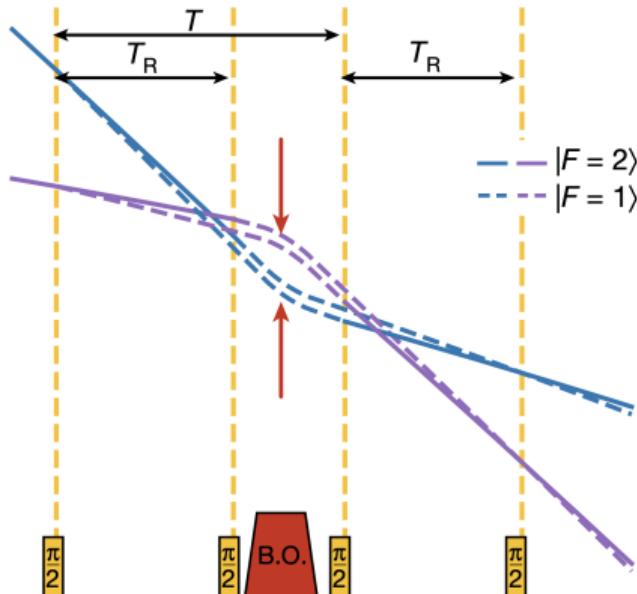
- ▶ the gravitational field g
- ▶ the gravitational gradient Γ
- ▶ atomic recoils and the fine structure constant α
- ▶ inertial forces (accelerations, rotations, ...)

Question: How to include general relativity (GR) into a quantum mechanical system like this?

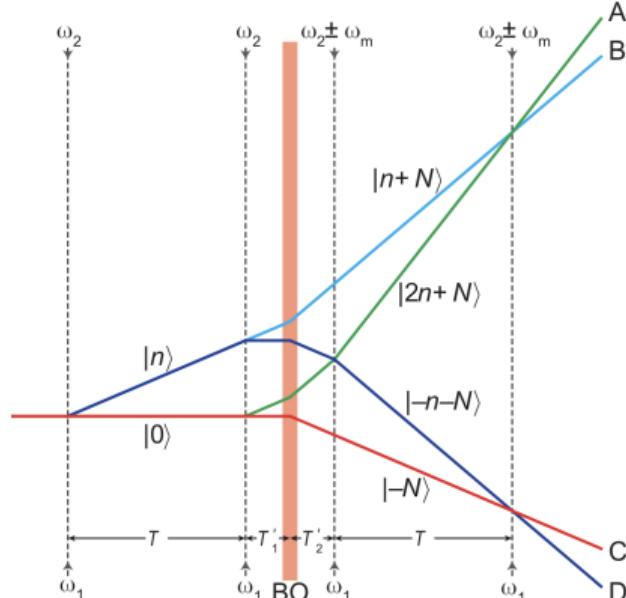
⇒ Can atom interferometers be used to test GR?

Atom Interferometers used to measure α

Measurements of α have accuracies of some dozen parts per trillion!



Interferometer geometry from
Morel et al. [1]



Interferometer geometry from
Parker et al. [2]

Possible Interferometer geometries:

We want to describe arbitrary interferometers of the following form:

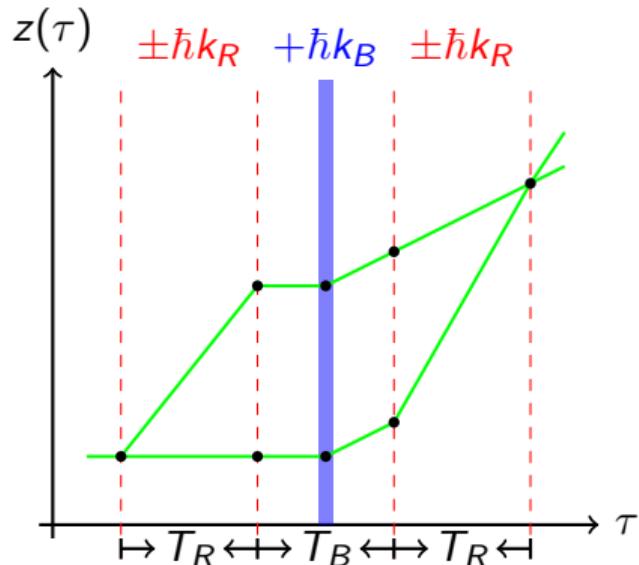
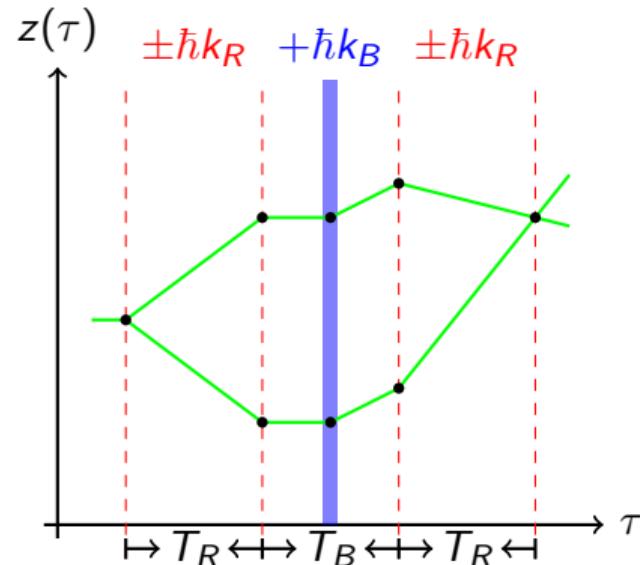


Figure: Example Geometries. Red lasers: Bragg scattering. Blue Laser: Bloch oscillations.

Gravitational model

We model the space-time metric of the earth by

$$ds^2 = - \left(c^2 + 2\phi(\vec{r}) + 2\beta \frac{\phi(\vec{r})^2}{c^2} \right) dt^2 + \left(1 - 2\gamma \frac{\phi(\vec{r})}{c^2} \right) d\vec{r}^2 + \mathcal{O}(c^{-4})$$

with 'test parameters' β, γ (in GR: $\beta = \gamma = 1$) and the Newtonian gravitational potential $\phi(\vec{r})$.

We will approximate: $\phi(z) = \phi_0 + gz - \frac{1}{2}\Gamma z^2$, i.e. Γ is the gravity gradient.

Gravitational model

We model the space-time metric of the earth by

$$ds^2 = - \left(c^2 + 2\phi(\vec{r}) + 2\beta \frac{\phi(\vec{r})^2}{c^2} \right) dt^2 + \left(1 - 2\gamma \frac{\phi(\vec{r})}{c^2} \right) d\vec{r}^2 + \mathcal{O}(c^{-4})$$

with 'test parameters' β, γ (in GR: $\beta = \gamma = 1$) and the Newtonian gravitational potential $\phi(\vec{r})$.

We will approximate: $\phi(z) = \phi_0 + gz - \frac{1}{2}\Gamma z^2$, i.e. Γ is the gravity gradient.

⇒ Models spherically symmetric earth (non-rotating) with gravity gradient and relativistic effects to order $\mathcal{O}(c^{-2})$.

Free Propagation

Between the laser pulses: Solve the Schrödinger equation for this Hamiltonian

$$\hat{H}_{\text{COM}} = mg\hat{Z} - \frac{m}{2}\Gamma\hat{Z}^2 + \frac{\hat{P}^2}{2m} + \frac{1}{mc^2} \left[\frac{2\gamma+1}{2}g\hat{P}\hat{Z}\hat{P} - \frac{\hat{P}^4}{8m^2} \right. \\ \left. + \frac{2\beta-1}{2}m^2g^2\hat{Z}^2 + 2(\beta-1)m^2\phi_0g\hat{Z} \right] + \mathcal{O}(\Gamma c^{-2}, c^{-4}). \quad (1)$$

Free Propagation

Between the laser pulses: Solve the Schrödinger equation for this Hamiltonian

$$\hat{H}_{\text{COM}} = mg\hat{Z} - \frac{m}{2}\Gamma\hat{Z}^2 + \frac{\hat{P}^2}{2m} + \frac{1}{mc^2} \left[\frac{2\gamma+1}{2}g\hat{P}\hat{Z}\hat{P} - \frac{\hat{P}^4}{8m^2} \right. \\ \left. + \frac{2\beta-1}{2}m^2g^2\hat{Z}^2 + 2(\beta-1)m^2\phi_0g\hat{Z} \right] + \mathcal{O}(\Gamma c^{-2}, c^{-4}). \quad (1)$$

We use the stationary phase approximation using the corr. Lagrangian L , s.t. we obtain a phase difference along the paths:

$$\Delta\Phi_{\text{Prop}} := \frac{1}{\hbar} \int [L(z_u(t)) - L(z_l(t))] dt. \quad (2)$$

Task: Solve the Euler-Lagrange equation to get $z_{u/l}(t)$ and perform the integral.

Electromagnetism

EM-Lagrange function: $L_{\text{EM}} = \int -\frac{\sqrt{-g}}{4\mu_0} F_{\mu\nu} F^{\mu\nu} d^3x$ with $g = \det(g_{\mu\nu})$.

Maxwell equations: $\nabla_\beta F^{\alpha\beta} = 0$ and we assume $F_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha$.

Electromagnetism

EM-Lagrange function: $L_{\text{EM}} = \int -\frac{\sqrt{-g}}{4\mu_0} F_{\mu\nu} F^{\mu\nu} d^3x$ with $g = \det(g_{\mu\nu})$.

Maxwell equations: $\nabla_\beta F^{\alpha\beta} = 0$ and we assume $F_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha$.

⇒ Relativistic corrections to the **amplitude** and the **phase**.

Electromagnetism

EM-Lagrange function: $L_{\text{EM}} = \int -\frac{\sqrt{-g}}{4\mu_0} F_{\mu\nu} F^{\mu\nu} d^3x$ with $g = \det(g_{\mu\nu})$.

Maxwell equations: $\nabla_\beta F^{\alpha\beta} = 0$ and we assume $F_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha$.

⇒ Relativistic corrections to the **amplitude** and the **phase**.

Solution: $\vec{A} = \mathcal{A} \left(1 - (\gamma + 1) \frac{gz}{c^2}\right) \vec{\varepsilon} e^{i\Phi(z,t)} + \mathcal{O}(\Gamma c^{-2})$.

Here $\mathcal{A} \in \mathbb{C}$ is an arbitrary amplitude, $\vec{\varepsilon}$ is the polarization vector.

Electromagnetism

EM-Lagrange function: $L_{\text{EM}} = \int -\frac{\sqrt{-g}}{4\mu_0} F_{\mu\nu} F^{\mu\nu} d^3x$ with $g = \det(g_{\mu\nu})$.

Maxwell equations: $\nabla_\beta F^{\alpha\beta} = 0$ and we assume $F_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha$.

⇒ Relativistic corrections to the **amplitude** and the **phase**.

Solution: $\vec{A} = \mathcal{A} \left(1 - (\gamma + 1) \frac{gz}{c^2}\right) \vec{\varepsilon} e^{i\Phi(z,t)} + \mathcal{O}(\Gamma c^{-2})$.

Here $\mathcal{A} \in \mathbb{C}$ is an arbitrary amplitude, $\vec{\varepsilon}$ is the polarization vector.

The phase is given by $\Phi(z, \tau) = \omega t \pm \left(1 - \frac{\gamma+1}{2} \frac{gz}{c^2}\right) k_z z + \mathcal{O}(\Gamma c^{-2})$.

Interaction Hamiltonian

The interaction Hamiltonian will be modeled by the dipole Hamiltonian and the 'Röntgen term'

$$\hat{H}_{\text{A-L}} = -\vec{d} \cdot \vec{E}(\hat{Z}) + \frac{1}{2m} \left[\vec{P} \cdot \left(\vec{d} \times \vec{B}(\hat{Z}) \right) + \text{h.c.} \right].$$

Interaction Hamiltonian

The interaction Hamiltonian will be modeled by the dipole Hamiltonian and the 'Röntgen term'

$$\hat{H}_{\text{A-L}} = -\vec{d} \cdot \vec{E}(\hat{Z}) + \frac{1}{2m} \left[\vec{P} \cdot \left(\vec{d} \times \vec{B}(\hat{Z}) \right) + \text{h.c.} \right].$$

⇒ Analyze this for **elastic scattering** processes, i.e. Bragg scattering and Bloch oscillations.

⇒ Calculate imprinted phase during laser interactions.

Python Code

We programmed a Python code to quickly calculate all relevant terms to order $\mathcal{O}(c^{-2})$.

- ▶ Describe time decomposition, e.g. (T_R, T_B, T_R) .
- ▶ How many momentum quanta are in each path segment, e.g. upper path $[0, 1, 0]$.

Python Code

We programmed a Python code to quickly calculate all relevant terms to order $\mathcal{O}(c^{-2})$.

- ▶ Describe time decomposition, e.g. (T_R, T_B, T_R) .
- ▶ How many momentum quanta are in each path segment, e.g. upper path $[0, 1, 0]$.

⇒ The code produces a .txt file with all results and a .pdf with additional information.

Python Code

We programmed a Python code to quickly calculate all relevant terms to order $\mathcal{O}(c^{-2})$.

- ▶ Describe time decomposition, e.g. (T_R, T_B, T_R) .
- ▶ How many momentum quanta are in each path segment, e.g. upper path $[0, 1, 0]$.

⇒ The code produces a .txt file with all results and a .pdf with additional information.

⇒ The code only leaves out the 'Finite Speed of Light' (FSL) effects.

⇒ I can show it to you now.

References

- Léo Morel, Zhibin Yao, Pierre Cladé, and Saïda Guellati-Khélifa.
Determination of the fine-structure constant with an accuracy of 81 parts per trillion.
Nature, 588(7836):61–65, 2020.
- Richard H Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, and Holger Müller.
Measurement of the fine-structure constant as a test of the standard model.
Science, 360(6385):191–195, 2018.