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Motivation

Atom interferometers are tools that can be to measure:

I the gravitational field g

I the gravitational gradient Γ

I atomic recoils and the fine structure constant α

I inertial forces (accelerations, rotations, . . . )

Question: How to include general relativity (GR) into a quantum mechanical system
like this?

=⇒ Can atom interferometers be used to test GR?



Atom Interferometers used to measure α

Measurements of α have accuracies of some dozen parts per trillion!

Interferometer geometry from
Morel et al. [1] Interferometer geometry from

Parker et al. [2]



Possible Interferometer geometries:

We want to describe arbitrary interferometers of the following form:
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Figure: Example Geometries. Red lasers: Bragg scattering. Blue Laser: Bloch oscillations.



Gravitational model

We model the space-time metric of the earth by

ds2 = −
(
c2 + 2φ(~r) + 2β

φ(~r)2

c2

)
dt2 +

(
1− 2γ

φ(~r)

c2

)
d~r 2 +O(c−4)

with ’test parameters’ β, γ (in GR: β = γ = 1) and the Newtonian gravitational
potential φ(~r).

We will approximate: φ(z) = φ0 + gz − 1
2Γz2, i.e. Γ is the gravity gradient.



Gravitational model

We model the space-time metric of the earth by

ds2 = −
(
c2 + 2φ(~r) + 2β

φ(~r)2

c2

)
dt2 +

(
1− 2γ

φ(~r)

c2

)
d~r 2 +O(c−4)

with ’test parameters’ β, γ (in GR: β = γ = 1) and the Newtonian gravitational
potential φ(~r).

We will approximate: φ(z) = φ0 + gz − 1
2Γz2, i.e. Γ is the gravity gradient.

=⇒ Models spherically symmetric earth (non-rotating) with gravity gradient
and relativistic effects to order O(c−2).



Free Propagation

Between the laser pulses: Solve the Schrödinger equation for this Hamiltonian

ĤCOM = mgẐ − m

2
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2m
+

1
mc2

[
2γ + 1
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8m2

+
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m2g2Ẑ 2 + 2(β − 1)m2φ0gẐ

]
+O(Γ c−2, c−4). (1)
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ĤCOM = mgẐ − m
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ΓẐ 2 +

P̂2

2m
+

1
mc2

[
2γ + 1

2
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We use the stationary phase approximation using the corr. Lagrangian L, s.t. we obtain
a phase difference along the paths:

∆ΦProp :=
1
~

∫
[L(zu(t))− L(zl(t))] dt. (2)

Task: Solve the Euler-Lagrange equation to get zu/l(t) and perform the integral.



Electromagnetism

EM-Lagrange function: LEM =
∫
−
√
−g

4µ0
FµνF

µνd3~x with g = det(gµν).

Maxwell equations: ∇βFαβ = 0 and we assume Fαβ = ∂αAβ − ∂βAα.
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)
~ε e iΦ(z,t) +O(Γ c−2).

Here A ∈ C is an arbitrary amplitude, ~ε is the polarization vector.
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Solution: ~A = A
(
1− (γ + 1) gz

c2

)
~ε e iΦ(z,t) +O(Γ c−2).

Here A ∈ C is an arbitrary amplitude, ~ε is the polarization vector.

The phase is given by Φ(z , τ) = ωt ±
(
1− γ+1

2
gz
c2

)
kzz +O(Γ c−2).



Interaction Hamiltonian

The interaction Hamiltonian will be modeled by the dipole Hamiltonian and the
’Röntgen term’

ĤA-L = −~d · ~E (Ẑ ) +
1
2m

[
~P ·
(
~d × ~B(Ẑ )

)
+ h.c.

]
.
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=⇒ Analyze this for elastic scattering processes, i.e. Bragg scattering and Bloch
oscillations.

=⇒ Calculate imprinted phase during laser interactions.



Python Code

We programmed a Python code to quickly calculate all relevant terms to order O(c−2).

I Describe time decomposition, e.g. (TR ,TB ,TR).

I How many momentum quanta are in each path segment, e.g. upper path [0, 1, 0].
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We programmed a Python code to quickly calculate all relevant terms to order O(c−2).

I Describe time decomposition, e.g. (TR ,TB ,TR).

I How many momentum quanta are in each path segment, e.g. upper path [0, 1, 0].

=⇒ The code produces a .txt file with all results and a .pdf with additional
information.

=⇒ The code only leaves out the ’Finite Speed of Light’ (FSL) effects.

=⇒ I can show it to you now.
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