

Local Measurement of Gravitational Curvature using Atom Interferometers

Michael Werner¹, Ali Lezeik², Dennis Schlippert², Ernst Rasel², Naceur Gaaloul², and Klemens Hammerer¹

¹ Institute of Theoretical Physics, Leibniz University Hannover, Appelstraße 2, 30167 Hannover, Germany

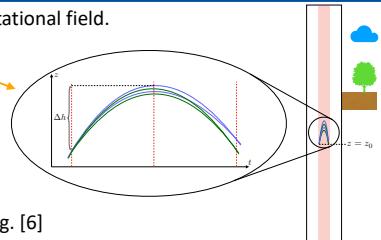
² Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany

* michael.werner@itp.uni-hannover.de

Leibniz
Universität
Hannover

Introduction & Motivation

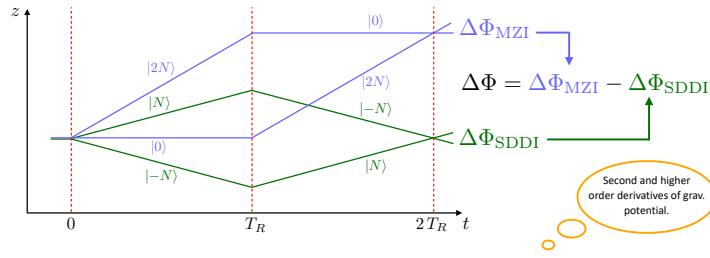
- Light pulse atom interferometers (AlF) are exquisite quantum probes of the spatial inhomogeneity and curvature of the gravitational field.
- We present a geometry, the 'Co-located Gradiometric Interferometer' (CGI), in which the differential signal of two co-located interferometers singles out a phase proportional to gravitational curvature. [1]
- As a case study, we theoretically examine the implications and implementation of this CGI geometry in the context of the Hannover VLBAI facility. [2]
- Measuring the gravitational curvature with quantum systems has recently gained interest:
 - Quantum mechanical measurements of spacetime curvature [3] or gravitational entanglement. [4]
 - The proposed 'Gravitational Aharonov Bohm effect'. [5] → Detecting gravitational anharmonicities in civil engineering. [6]



Co-located Gradiometric Interferometer (CGI)

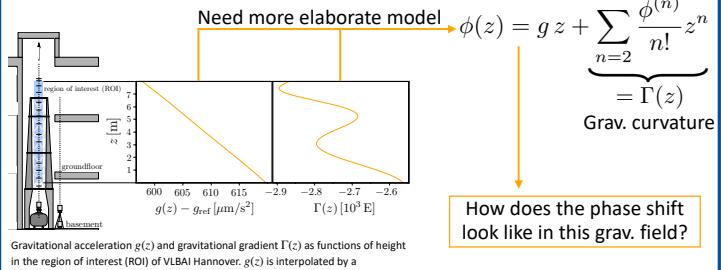
We define the CGI as a differential measurements scheme between two AlFs initialized at the same height [1].

The CGI consists of a **Mach-Zehnder Interferometer (MZI)** and a **Symmetric Double Diffraction Interferometer (SDDI)** like this:



The differential phase of this AlF is especially sensitive to **gravitational curvature**.

Real Gravitational Field: VLBAI Hannover



Extending the analysis to this more complicated grav. field we see that

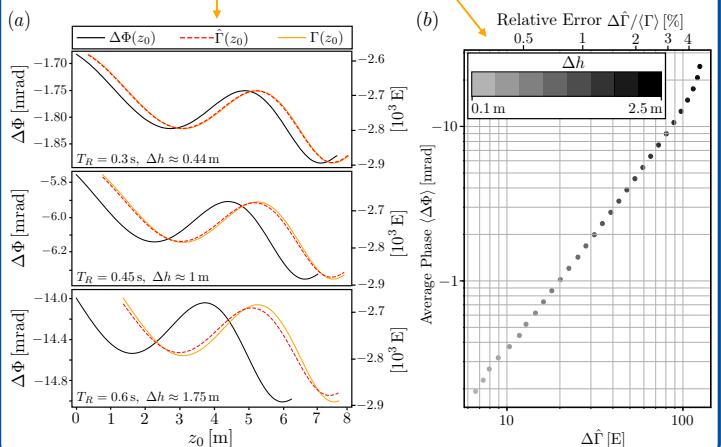
$$\Delta\Phi \approx -\frac{m}{\hbar} \sum_{n=2}^{2T_R} \frac{\phi^{(n)}}{n!} [\mathcal{A}_{\text{MZI}}(n) - \mathcal{A}_{\text{SDDI}}(n)]$$

with $\mathcal{A}_{\text{MZI}}(n) = \int_0^{2T_R} (z_{\text{up}}^{\text{MZI}}(t)^n - z_{\text{low}}^{\text{MZI}}(t)^n) dt$

The CGI is robust under the transition to complex grav. fields and we show how one can define an estimator for the grav. curvature from the phase measurement.

Estimator $\hat{\Gamma}(z_0) = \frac{\Delta\Phi(z_0 - \|z(t)\|_3)}{f}$ with $\|z(t)\|_3 = \left(\frac{1}{2T_R} \int_0^{2T_R} |z(t) - z_0|^3 dt \right)^{1/3}$.

Phase shift describes grav. curvature at a height roughly 77% of Δh higher. Scale factor f can still be used as a good estimator for grav. curvature [1, 2].



Phase Shift in Idealized Gravitational Fields

Consider an idealized gravitational potential as: $\phi_{\text{Ideal}}(z) = gz + \frac{1}{2} \Gamma_0 z^2$
Earth's gravity gradient $\Gamma_0 \approx -3 \times 10^3 \text{ E}$

Calculating the phases in this scenario leads to:

Phase comparison of MZI and SDDI				
MZI	SDDI	Phase	Magnitude [rad]	Differential signal
2	2	$Nk g T_R^2$	1.4×10^{-7}	0
2	2	$Nk z_0 \Gamma_0 T_R^2$	20	0
2	2	$Nk v_0 \Gamma_0 T_R^3$	14	0
$-\frac{7}{6}$	$-\frac{7}{6}$	$Nk g \Gamma_0 T_R^4$	14	0
2	0	$\frac{N^2 \hbar k^2 T_R^3}{m}$	1.5×10^{-2}	2
-6	-6	$\frac{N \hbar g T_R^2}{c^2}$	2.3×10^{-9}	0
6	6	$\frac{N \hbar g \Gamma_0 T_R^2}{c^2}$	2.4×10^{-9}	0
10	0	$\frac{N^2 \omega_R \hbar k g T_R^2}{m c^2}$	1.1×10^{-12}	10
-4	0	$\frac{N^2 \omega_R \hbar k g T_R}{m c^2}$	1.1×10^{-12}	-4
0	4	$\frac{N^3 \omega_R \hbar^2 k^2 T_R}{m c^2}$	5.7×10^{-16}	-4

Not included in this list: Finite speed of light (FSL) contributions. Mitigated below anyway.

Phase dominantly given by:

$$\Delta\Phi \approx \frac{2\Gamma_0 N^2 \hbar k^2 T_R^3}{m} = f \cdot \Gamma_0$$

Scale factor f is known to high precision!

Only depends on:

k Laser wavenumber \hbar/m Atomic recoil T_R AlF time

Same as 'tidal phase' in [3, 5] but with different origin.

Additional phase shift contributions are very small

FSL Phase Mitigation

The FSL phases heavily depend on the experimental setup. As an example consider two-photon Bragg scattering processes:

$$\text{Resulting FSL phase } \Delta\Phi_{\text{FSL}} = \frac{4\hbar N^2 k^2 T_R}{mc} \left(4gT_R - v_0 - \frac{N\hbar k}{m} \right) + \Delta\Phi_0 \xrightarrow{\text{const.}}$$

Mitigation by common frequency chirp at the third IF pulse of ν_{Det} .

$$\xrightarrow{\text{Additional phase } \Delta\Phi_{\text{Additional}} = 2NT_R \nu_{\text{Det}} \frac{v_0 + \frac{N\hbar k}{m} - gT_R}{c} \text{ can be tuned to cancel the FSL phase. Typical order of magnitude (10m): } \nu_{\text{Det}} \approx 100 \text{ MHz}}$$

References

- [1] M. Werner, A. Lezeik, D. Schlippert, E. Rasel, N. Gaaloul, K. Hammerer, Local Measurement Scheme of Gravitational Curvature using Atom Interferometers, arXiv: 2409.03515, 2024
- [2] M. Werner, K. Hammerer, Local Measurement Scheme of Gravitational Curvature using Atom Interferometers [Data set], LUIS 10.25835/2D8KYOZ3, 2024
- [3] P. Asenbaum, C. Overstreet, T. Kovachy, D. Brown, J. Hogan, M. Kasevich, Phase Shift in an Atom Interferometer due to Spacetime Curvature across its Wave Function, Phys. Rev. Lett. 118, 183602, 2017
- [4] D. Carney, H. Müller, J. Taylor, Using an Atom Interferometer to Infer Gravitational Entanglement Generation, PRX Quantum 2, 030330, 2021
- [5] C. Overstreet, P. Asenbaum, J. Curti, M. Kim, M. Kasevich, Observation of a gravitational Aharonov-Bohm effect, Science 375 6577 (2022)
- [6] B. Stray et al., Quantum sensing for gravity cartography, Nature 602, 590, 2024
- [7] M. Schilling, E. Wodey, L. Timmen, D. Tell, K. Zipfel, D. Schlippert, C. Schubert, E. Rasel, J. Müller, Gravity field modelling for the Hannover 10 m atom interferometer, J. Geod. 94, 122, 2020