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Introduction & Motivation

the Hannover VLBAI facility. [2]

The proposed ,Gravitational Aharonov Bohm effect’. [5]

@ Light pulse atom interferometers (AIF) are exquisite quantum probes of the spatial inhomogeneity and curvature of the gravitational field.

® We present a geometry, the ,Co-located Gradiometric Interferometer’ (CGl), in which the differential signal of two
co-located interferometers singles out a phase proportional to gravitational curvature. [1]

® As a case study, we theoretically examine the implications and implementation of this CGl geometry in the context of

® Measuring the gravitational curvature with quantum systems has recently gained interest:
Quantum mechanical measurements of spacetime curvature [3] or gravitational entanglement. [4]

Detecting gravitational anharmonicities in civil engineering. [6]

We define the CGl as a differential measurements scheme between to AlFs
initialized at the same height [1].

The CGI consists of a Mach-Zehnder Interferometer (MZI) and a Symmetric
Double Diffraction Interferometer (SDDI) like this:
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The differential phase of this AIF is especially sensitive to gravitational curvature.

Co-located Gradiometric Interferometer (CGl) Real Gravitational Field: VLBAI Hannover
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Consider an idealized gravitational potential as:  @1deal(2) = g2 + 51—‘02
Earth’s gravity gradient 'y &~ —3 x 10°E

Calculating the phases in
this scenario leads to:

Phase dominantly given by:

Phase comparison of MZI and SDDI
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Not included in this list: Finite speed of light

o - Additional phase shift
(FSL) contributions. Mitigated below anyway.

contributions are very small

Phase Shift in Idealized Gravitational Fields

The FSL phases heavily depend on the experimental setup. As an example

consider two-photon Bragg scattering processes:
const.

Resulting FSL phase Adpgp, =
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Mitigation by common frequency chirp at the third IF pulse of vpet.
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to cancel the FSL phase. Typical order of magnitude (10m): vpet =~ 100 MHz

can be tuned
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£(z) and gradient I'(z) as functions of height
in the region of interest (ROI) of VLBAI Hannover. g(2) is interpolated by a
polynomial fit. Building cross-section taken from [7] and adapted.

How does the phase shift
look like in this grav. field?

Extending the analysis to this more complicated grav. field we see that
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The CGl is robust under the transition to complex grav. fields and we show how
one can define an estimator for the grav. curvature from the phase measurement.

Estimator I'(z)) = M
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Cubic mean.

Phase shift describes grav. curvature at a height roughly Roughly 0.77Ah
77% of Ah higher. Scale factor f can still be used as a

good estimator for grav. curvature [1, 2].
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