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CHAPTER 1. OUTLINE 1

Chapter 1

Outline

This thesis analyzes the possibility of taking mathematical rigorous limits of mea-
surements on certain quantum mechanical systems and discusses necessary criteria
for this limit to be well defined. Since the standard formalism of quantum mechan-
ics is not capable of capturing those elaborate limit constructions, due to its lack of
mathematical generality, we will always see quantum mechanics from the “quantum
information” viewpoint, i.e. describing time evolution of states via quantum chan-
nels E between certain C*-algebras B. For the sake of presentation we will display
this graphically in the following way:

A

B - B B B
\N\NME  N\ANS> AN E IAAANAS

(a) A quantum channel (b) A quantum channel with dilation

The second figure already used Stinesprings factorization theorem to construct a
so-called “dilation space” corresponding to the C*-algebra A. Both channels E and
E are equivalent. After taking the limit, those channels induce non trivial dynamics
on the dilation space, which we will view as a one-dimensional quantum field. The
typical example for such a system would be an atom in a cavity. The out-coupled
light field would then correspond to the quantum field described above.

We end by briefly discussing properties of this field and give some outlooks about
further interesting research topics involving this construction. Let us briefly sum-
marize the content of each chapter.
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In chapter 2 we collect the preliminaries we will need out of a variety of different
mathematical subjects. We use this chapter to fix notation and to give basic insights
in fields like nets, inductive limits or evolutions systems, which are not part of every
physicists standard literature.

Chapter 3 is used to define the basic algebraic objects needed for our limit, i.e. we
define a “limit Hilbert space”, show its well definedness and discuss basic/canonical
properties of this space. In analogy to quantum stochastic calculus we introduce a
dense subset of this space, known as exponential vectors and discuss similarities to
the Fock spaces.

Since we want to apply our formalism to some quantum states, we’ll need to come
up with some examples, which will be done in chapter 4. The “Finitely Correlated
States” (FCS, aka MPS) can be motivated to be a fruitful choice regarding this task.
Since MPS already have a continuous analogue, i.e. “cMPS”, which are defined
rather heuristically, we are able to compare the two limit results. We therefore
recall the first definitions of all those notions and describe how to view them in the
context of continuous measurements.

In chapter 5 we will define “discrete” field operators and show their well definedness
in the refinement limit. It will be more convenient for this thesis, however, to deal
with Weyl operators, i.e. the objects generated by those field operators. We also
proof that the Weyl operators fulfill a special form of the Weyl CCR.

Chapter 6 begins with a quick recap of second quantization and what this correspond
to in the context of continuous measurements. One then defines point processes and
characteristic functions which model experimental setups in typical quantum optics
laboratories. Those point processes are then related to expectation values of the
Weyl operators defined prior and analyzed in the limit.

The last chapter is a summary of continuous Stinespring dilations and finally defines
cMPS in a new way. We analyze this notion with multiple tools and explicitly
calculate an example. We end by given an outlook over possible further research
topics.
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Chapter 2

Mathematical and Physical Basics

First we want to set some notation and preliminaries. A scalar product is defined to
be antilinear in the first argument and linear in the second argument and written in
the Dirac formalism as Bra’s and Ket’s, throughout this thesis. All Hilbert spaces
we encounter are implicitly defined to be complex and separable. Since this thesis
needs a lot of different mathematical tools, we need to define some basic concepts
out of a variety of mathematical subjects.

2.1 Preliminaries in Functional Analysis

The modern formalism of quantum mechanics is given by so-called “channels” be-
tween C*-algebras. We start by collecting some basic properties and definitions.

Definition 2.1. Let (X, ||-|| ), (Y, ||-|ly) be normed spaces and A € L(X,Y) a linear
operator. Denote the operator norm of A € L(X,Y) as

HAHop = Sup HAxl‘Y (21)

[l x <1

Whenever the underlying spaces are clear we will omit the indices. If ||All,, < oo
we call A a bounded operator and denote A € B(X,Y). If, however, we will
encounter some unbounded operators, we will explicitly highlight those and restrict
its domain, whenever possible, to a dense subspace.

Definition 2.2. An associative algebra is a vector space A over C with an
associative and distributive product, i.e. for all A, B,C € A we have
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i) A(BC) = (AB)C,
i) A(B+C)=AB+ AC and (A+ B)C = AC + BC,

i11) (WA)(vB) = uv(AB) with u,v € C.

An involution is a map A> A— A" € A satisfying

i) A= A,
i) (AB)" = B'A,
ii) (nA+vB)' = p*A' + v BT with p,v € C,

where i denotes the complex conjugate of u € C.

An associative algebra with an involution is called *-algebra or involutive Alge-

bra." The algebra A is called normed with norm ||| : A — [0, 00) if

i) || Al =0 if and only if A =0,
i) |pAll = |pl|All with p € C,
iir) [|A+ Bl < [|All+ 1B,

w) [[AB| < [ A]llIB][-

Having a norm and an involution on our underlying algebra it makes sense to ask

how both notions interact.

Definition 2.3. Let (A, ||-||) be a normed algebra.

i) If A is complete w.r.t the norm topology, one calls A a Banach algebra.

ii) A Banach algebra A with an involution t, such that ||A| = HATH VA e A
holds, is called B*-algebra.

iii) A B*-algebra for which HAATH = |A||” VA € A is true is called C*-algebra.

'"Even though it is called *-algebra, we will use * = T, since the star is already used for complex

conjugation.
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All those algebras canonically carry some more algebraic structures. We denote A’
for the topological dual space of A. The set of positive elements in A is
defined as

A= {A € A| A= A" and o(A) C 0, oo)]} ,

where 0(A) :={A e C { A4 — A is not invertible} is the spectrum of A.

If A € A,y one writes A > 0. A functional ¢ € A’ is said to be positive if

©(ATA) >0V A e A. If ¢ is positive and furthermore ||¢|| = 1 holds, we call ¢ a
state and denote the set of states as S(A).

Having those basic notions, one is able to construct the following function spaces,
as it is usually done in basic functional analysis courses.

Notation 2.4. Let H be a Hilbert space and A,B be C*-algebras. The following
spaces will be used frequently in the upcoming analysis:

i) The space of compact operators K(H).
it) The space of trace class operators T(H).

iii) The Hilbert space of Hilbert-Schmidt-operators (HS(H), (- |-)ps) with scalar
product

([ Vs HXH—C, (AB) g = tr(BTA).

iv) The space of completely positive maps CP(A, B).

We will encounter symplectic vector spaces, most importantly the phase space,
and exploit its algebraic structure. However, it is sometimes practical to think
of symplectic forms being induced by a complex structure. We will discuss this
relation in the following definitions.

Definition 2.5. Let = be a 2N -dimensional vector space with a symplectic form,

i.e. a bilinear, antisymmetric and non-degenerate map o : = X = — R. (2, 0) is
then called a symplectic space.

This symplectic space structure helps in classical mechanics to simplify the equa-
tions of motion and to analyze the geometry of the phase space. If, however, we have
a complex vector space (or a complexification of a real vector space) the symplectic
structure comes with it canonically in the following way.
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Definition 2.6. Let V' be a real vector space of dimension 2N. A real linear endo-
morphism J : V. — V satisfying J* = —1y is called a complex structure.

If such a map is defined on all of V one can define V' to be an N-dimensional
complex vector space by setting (x + iy)v := xv + yJ(v). One says the vector space
(V,J) =: Vi is the complexification of V.

The correspondence to symplectic vector spaces is then given by the following ob-
servation. Let V¢ be the complexification of V', then (V, o) with o(x,y) = Im((z|y))
defines a symplectic vector space. Showing that ¢ is indeed a symplectic form is a
straightforward calculation.

2.2 Inductive Limits

Defining limits of algebraic objects in a mathematical rigorous way is an important
topic of this thesis. The most general discussion of these objects is obtained in
category theory. In this thesis, however, we do not need such an abstract definition
and rely on the construction of projective and inductive limits in most topology
textbooks. The construction and notation in this section is adapted from [Bou04].

Definition 2.7. A preordered set is a set I with a binary relation <, that is
reflexive and transitive, i.e. for all a,b,c € I we have that

i) a < a (reflexivity)

i) a<b A b<c=a<c (transitivity).

This definition alone is not enough to define limits properly, so one also requires:

Definition 2.8. A directed set I is a preordered set such that every finite subset
of I has an upper bound. Let X be a topological space with topology T, then a map
f:(I,<) — (X, T) is called a net.

Even though, in abuse of notation, one mostly refers to an element f, for a € [
as the net; since all examples of nets will be quite intuitive, this will be always
clear from context. Since nets are a generalization of sequences it seems natural to
lift the usual definition of a sequence being convergent or Cauchy to this notion.
In order to do so, we restrict the image space of the nets to normed spaces. One
could, however, require less structure, for example uniform spaces, but we stay with
normed spaces for simplicity.
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Definition 2.9. A net n: (I,<) — (X, |[-[]),é = m; into a normed space X is
called a Cauchy net iff

Ve>03ielstVikel, jk>i:|n—mnl<e (2.2)

Furthermore, n; is said to be a convergent net with limit n =: liﬂm e X iff
iel

Ve>03ielstVjel, j>i:|q—nl <e (2.3)

Since most of the nets we are dealing with a mapping into, at least, Banach spaces,
the convergence of Cauchy nets becomes easy to prove. We will take advantage of
this fact later on.

Given this notion, we can extend this convergence construction from elements of
some normed space to more abstract categories, i.e. we can define limits of certain
algebraic objects like groups or rings. However, when defining convergence in any
way one needs to compare different objects with each other. In topological spaces
this is done by looking whether different elements are in open neighborhoods of
each other or not in contrast to normed spaces, where the norm quantifies this
comparison.

Dealing with more abstract algebraic objects the role of comparing different ele-
ments needs to be lifted to homomorphisms of that underlying structure. This is
the basic idea of the so-called “inductive limit”. In this thesis mostly limits of
vector spaces will be used, the definition is, nonetheless, more general:

Definition 2.10. Let (I,<) be a directed set and let {XZ- i€ I} be a family of
algebraic objects indexed by I. Furthermore, let f;; : X; — X, be a homomorphism
of the algebraic structure for every i < j such that:

i) fi is the identity of X; for alli € I

i) fix = firo fij foralli<j<kel

The pair (X, fi;) is called an inductive system over I. The inductive limit of
the system (X, fi;) is then defined as

f-lim X, .= UXi ~

el
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where x; ~ x; with v; € X; and x; € X; = J kel st fy(x;) = fr(z;) € X;.
There is another, closely related, kind of limit space we will present here for the
sake of completeness.

Definition 2.11. Let (X, f;;) be a direct system again. The inverse limit of this
system is then defined as a subspace of the direct product of the {Xi }z € I} via

f_th’L = { x17$2,..

1€l

= fij(x )Vigje[}. (2.4)

el

Both notions are related to each other by duality. This is meant in the sense that
Hom (hén X;, Y) = @Hom (X;,Y), so if the algebraic objects carry a vector space
structure, those limits are “dual” to each other. If the family of spaces are Hilbert
spaces, then the limit space will canonically carry the structure of a Pre-Hilbert
space.

Notation: Let us fix a directed set (I, <) and note the following subtle difference
in notation.

i) If we consider a net, i.e. a map from (I, <) with values in a topological (mostly

even normed) space, then we will write hg for the limit.
iel

ii) In contrast to this we can take the limit of an inductive system (X;, f;;). Here
we would use the limit notation f-lim.

i€l

So the existence of a homomorphism like f in the limit notation automatically
shows the reader what kind of construction was used. In abuse of language we will
always refer to maps, indexed by a directed set, as “nets”.

The directed set we are going to use is the following set of interval decompositions.

Definition 2.12. Let [0,T] be a fized interval. An interval decomposition © is
a finite set of points in [0,T] where 0 and T are always included, i.e.
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The set of interval decompositions of [0,T] will be denoted by 3([0,T]) and the set
of labels (without the 0), i.e. {1,...,n}, by 1(©).

The length of the i-th subinterval will be written as 7, = t; — t;_; fori € I(©) and
number of subintervals will be denoted as #1(0). When © C = we say that © is
coarser than = or, equivalently, that = is finer than ©.

Those interval decompositions constitute a directed set, as it was already mentioned.
There is, however, even more structure on this set.

Lemma 2.13. The set of interval decompositions with the set theoretic inclusion
C defines a directed set. Even more so we have that for every ©,= € 3([0,T]) an
upper bound is given by © U =.

Proof. The proof is straightforward application of set theory and shall be omitted
here. O

Since this construction seems quite abstract it helps to visualize some interval de-
compositions. The following graphic makes the order relation between different
interval decompositions intuitive.

i€ 1(0) o TQ---------- |
e — | L =3 4
0 t1 to T
L
~ 0 t1 lo i3 ly4 T
A kezl(A) ML s B S VR >
0 t1 to t3 ty 15 te t7 T

Figure 2.1: Comparison of different interval decompositions © C = C A
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2.3 Maps Between Inductive Limit Spaces

We are mainly interested in maps from a fixed Hilbert space H into an inductive
limit space IC, corresponding to an inductive system of Hilbert spaces (Kg, Joz)
or in maps between inductive limit spaces.” Since we will define operators on the
discrete spaces Kg first and then take the limit we need a notion of convergence
of operators between different spaces, i.e. we need to say what it means for an
operator Ogz : Kg — Kz to converge to an operator O : K — K w.r.t. the
inductive system Jzg : Kg — Kz. As usual for operator convergence, we will be
able to define multiple topologies corresponding to this construction.

Since, for example, the maps Og : Kg — Kg, or Vg : H — Kg do not map
into the same space when comparing them with another interval decomposition =,
it makes no sense to talk about net convergence in the first place. We will define
what it means for those “nets” of operators to converge, even though they do not
constitute nets in the usual sense. More formally:

Definition 2.14. Let ‘H be a Hilbert space and (Kg, Jzg) an inductive system of
Hilbert spaces with IC denoting the closure of the limit space and Jg : Kg — K is
the natural embedding into the limit space.

In abuse of notation and language we say that Vg : H — Kg is a net of operators.
We denote t@e (real) net of operators mapping into the limit space and indexed by
3([0, 7)) as Vg : H — K, with Vg := JgVe and say that © — Vg converges
in norm: iff © —s Vg converges w.r.t. the operator norm Il on B(H, K).
strongly: iff © — Vg |¢) converges on (K, ||-||,.) for every o) € H.
weakly: iff © — <)\“7@<,0> converges on (C,|-|) for every |p) € H and
|A) € K.

Analogously we say that Og : Kg — Kg is a net of operators.
Define Og : K — K to be Og = J@O@Jl) and say that © — Og converges

in norm: iff © —s Og converges in (B(K), [l 5p)-
strongly: iff © —s Og |¢) converges on (K, |-l,c) for every |p) € K.

weak-*: iff © — tr <p 56) converges on (C, |-|) for every p € T(K).

*Note that we implicitly mean the norm closure of the inductive limit, since the limit of Hilbert
spaces would only be a Pre-Hilbert space.
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We can simplify this convergence properties using a variety of different notions.
Firstly, dealing mostly with Banach space valued nets, we can shorten our notation
by defining the following limit.

Definition 2.15. Let czg € R be a real number for every Z,0 € 3(]0,7]). We
define a discrete comparison limit to be

lim czg :=  lim  limsup {cz0 |2 € 3([0,71]),2 2 O}. (2.6)
=>0 e 3([0,17)

Having defined convergence of nets in equation (2.3) one can simplify this, using
the definition above, in the following way:.

Corollary 2.16. Letn: (3([0,7]),C) — (X, ||:||) @ Banach space valued net. The
net 1 being convergent is equivalent to the condition

i e — nall = = C E. .
lim [lnz —nell =0 ¥V ©,2€ 3([0,T1),0 ¢ (2.7)

Proof. One direction is straightforward, since every Cauchy net in (X, ||-||) auto-
matically converges. For the other direction assume _lir% lnz — nell = 0. It follows

that for every e > 0 there exists a © € 3([0,71) such that [m —nall < § for all
©C=CA

Hence there exists a Z € 3([0,77]), dependent on © and ¢ such that |[ny —nel| < §
for = C A. Using the sub-additivity of the norm we have for every = C A; C
A, that ||77A1 — nA2H < HnAl — 77@H + Hn@ — nA2H < ¢ holds and therefore obtain
convergence. ]

Having this new limit notation one can also simplify the convergence properties for
operators between limit spaces in the sense that the norms taken are not needed to
be induced from the abstract space K but rather from the discrete spaces Kg. This
greatly simplifies our analysis, since the latter norms can be calculated explicitly in
our construction.

Note that if g is finite-dimensional, which will be the case in our upcoming analysis
starting in chapter 3, then B(Kg) is a reflexive Banach space with the operator
norm and therefore weak and weak-* topologies coincide. From now on we will
assume finite-dimensionality of g and therefore use the terms “weak” and “weak-
*7 gynonymously.
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Theorem 2.17. Let Vg : H — Kg be a net of operators on the direct system
(Ko, Jzo) as before. The following convergence conditions for Vg are equivalent to
the prior definitions. That means the net © — Vg is

norm convergent iff lim ||Vz — JzgVg||, = 0.

=>0 °op
strongly convergent iff :11>>r% 1Vzle) — JzeVo @), =0V [p) € H.
weakly convergent iff :11>g1® (A=|(Vz — JzeVe) p) =0 for all |¢) € H and all
Cauchy nets [A\zg) € Kz=.

Let Og : Kg — Kg be a net of operators. The net © — Og is

=0.

op

norm convergent iff _111% HOE — JEQO@Jée
=2

strongly convergent iff :h;% H(OEJé — J=600J}) M}HK =0V |\ ek.
weak-* convergent iff :h;ne tr (pE (OE — JE@O@J£9>) = 0 for all nets p= €
T(K=z) which are Cauchy w.r.t. the trace norm.

Proof. The proof simply uses the corollary before and some norm equivalences of
the form ||Jz |p=) — Jo lpe)|l = ||le=) — Jze lpe)||. This can be shown fairly easy
for any norm involved, since the norm is induced by a scalar product, the Jzg are
isometries and those maps constitute an inductive system. Hence one can calculate

17z =) — Jo lpo)ll® = (Jzp= — Jowol Jepz — Jove)
= <JE (905 - JE@W@)UE ( == JE@SOG)»
= (p= — Jzoelpz — Jzove) = |lp=) — Jzo lve)|®. (28)

Note that the first norm is taken w.r.t. the limit space IC, whereas the last norm is
taken w.r.t. Kz, which is way less abstract. A norm on each Kz can also be written
down explicitly, due to its finite dimension.

We, split the proof into the convergence of Vg and Og and analyze each topology
separately.
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1) VQIH—>IC9

Norm convergence:

Vg is norm convergent ;<= © — Jg Vg converges on (B(H, K), ||-||Op>

Eq.

Cor. 216 ;. o (2.8) . T B
— Eh;% |J=Ve — JeVell,, =0 = Eh;% 1V — JzeVoll,, =0

Strong convergence:

Vi is strongly convergent :<= © — Jg Vg |p) converges on (IC,||-||) V |¢) € H

Cor. 2.16

= lim [[JzVzle) = JoVo l¢)llx =0V |0) € H

Eq. (2.8) ..
= lim [|Vz o) — JzeVe [P, =0V |p) € H

>0

Weak convergence:

Vg is weakly convergent
<= O r— (\JgVey) converges on (C,[|-|) V |p) € H,|\) € K

Cor. 2.16

L2 Jim (A J2Vap) — (N oVog) = 0 [0) € H,[3) € K

Since |[\) € K is arbitrary, we write it as J=z|Az) and require Z — |Ag) to be a
Cauchy net in order for |A) to be well defined. So weak convergence is equivalent
to: For all |p) € H and all Cauchy nets |A\z) € Kz we have

Eh>>r% |<JE>\EUE(VE - JE@V@)@H = Eh;% |<)‘E|(VE - JE@V@)SO>| =0.

2) O@Z]C@—>IC@

The proof works analogously for Og using the norm equation

|70 = 1006 I | = ||=(0= = J006720) L

9
op

= [0= = 6001
op

op ‘

which reduces the abstract norm on B(K) to the norm on B(Kz). Furthermore,
acting point wise on some vector it reduces the norm on X to the norm on K.
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Norm convergence:

Og is norm convergent <= O —> J@O@Jg converges on <B(/C), ||'||op>

Cor. 2.16
= =0

op

lim || J=0=JL - !
El>>Hé J_O_J_ J@O@JQ

- 1 H = J= l
on 0 <~ 51;% O= J_@O@J_e

Strong convergence:

Og is strong convergent

= 0 — JoOgJL |\) converges on (K, ||-||,.) ¥ |\) € K

Cor. 2.16 ;.
— lim (J=O=zJL — Jo0eJy) |N) . 0V N ek
' t 1 —
— lim H(OEJE Jz600J3) |>\>HICE 0V [\ €k

Weak convergence:

Og is weak-* convergent

<= Or— tr(pJ@O@J(B> converges on (C,|-|) Vp € T(K)

O A6 Eh>>r% ‘tr <pJEOEJ;> — tr (pJ@O@)JgM =0VpeZ(K)

We now use the linearity and cyclicity of the trace and calculate:

tr<pJEOEJ;> “tr (pjeogjg) - tr< (JEOEJ; . JEJEGOQJ;G)J;»

p
= tr <J;,0JE <OE — J5909J£®>> =tr (,05 (05 — JEGO@J;@>>7

where = —— p= must be convergent to p in order for p = JépJE to be a well defined
object. Since the space of trace class operators T(K) canonically carries three
different norm structures, i.e. the operator norm |||, the trace norm |-/, and the
Hilbert-Schmidt norm ||-||,;5, we have a priori multiple choices for the convergence
of p=z. But since T(K) only with the trace norm becomes a Banach space, and
therefore every Cauchy net converges, we restrict our pz to be Cauchy w.r.t. this
norm. ]

We can simplify our limit notions even more, assuming the operator nets of interest
being bounded. In this case we can weaken the needed conditions for convergence
in the following way. For the sake of presentation we will omit the norm topology
in this thesis from now on, since we won’t need it in the upcoming discussion.
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Theorem 2.18. Let Og : Kg — Kg be a net of operators as before and ||Og|| < C
for some C' € R and all © € 3([0,T1]), then © — Og is

strongly convergent iff /{1>r>ré |OAJre | Ae) — Ja=0=J=¢ ])\@>H,CA =0 for all
Cauchy nets |\g) € Kg.

weakly convergent iff 1{1>r>nE <)\@) (J/T\QOAJA@ — J;QOEJ%)) )\@> =0 for all
o) € Ke.

Proof. The basic proof idea is to exploit the fact that we can approximate every
vector A € K by a net A\g and use the triangle inequality.

“Amﬂ—@%gumfomw-

ery |A) € K. Since every Cauchy net in K converges and |\) € K above is arbitrary,
we can show strong convergence on elements of the form Jg|Ag) for Cauchy nets
© — |\g) and assume that |[A\g) converges to |A\) w.r.t. ||-||. We then calculate:

Strong convergence is equivalent to Aim
>E

| (7208 = J20=2) V)|
= [[(a0aTL = 20=L) (13 = Jo 1Re) + Jo o))

< |[1aOnTE (%) = Jo 12e)) |+

J=0=JL (|1\) — Jo |)\®>>HIC

+ HJAOAJ/T\J@ o) — J=O=JLJg |>\e>>HIC
< 20l||)\> —Jo |)\@>||zg+||JAOAJA® [Ao) — Jada=0=Jz¢ | o) [l
0

< [[Opadre |Ae) — Ja=0=J=¢ P‘@)HICA

Therefore the strong convergence of a net of bounded operators Og is equivalent
to the condition [lxim [0aJne [Ae) — Ja=O0=Jze [Xe) |, = 0 for every Cauchy net
>E

| Ae) € Ko.

Weak convergence is given by /{irr; tr <p (JAOAJ/T\ — JEOEJ£)> = 0. Here we can
>=

restrict the state p to pure states, since the set of states with finite rank is dense in
T(K) w.r.t. the trace norm and every trace class operator is a convex combination
of pure states.

Hence for every p € T(K) and € > 0 we can find a natural number n € N and a
family of vectors {|\;) € Kg | 1 <i < n}, s.t. the operator
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Pe = Z [ Ai] € T(Ke)

=1

is € close to p, i.e. ||p — Jopell;, = tr(|p — Jopel|) < €. Similar to before and using
the cyclicity of the trace we compute

tr(p (Ja0aJ} = J=022L) ) = tr((p = Jope + Jopo) (JaOrJk — J=021L))
— tr<(p — Jope) (JAOAJ,T\ - J505J£)> + tf(J@P@ (JAOAJIT\ - JEOEJ;))

< 2Ctr(p — Jope) + tr (P@ (JAOAJ/T\ - JEOE‘];) J@)

—0
n

_ tr(p@ (JAOAA@ _ JEOEJ;@» = <)\Z-

i=1

(11OnTle = J=0=J86 ) Av)

Hence iignﬁtr(p (JAOAJITX — JEOEJQ) = 0 for all p € T(K) is equivalent to the
>z

condition 11\1>I>n: <)\@’ (JAOAJITX@ - JEOE(@@) )\@> = 0 for every |\g) € Kg, iff Og is
bounded. ]

However, in some proofs we will stumble upon, those proof-techniques aren’t very
effective. In those settings it will be more convenient to restrict our proofs to a
suitable dense subspace of nets. Firstly we will define this new kind of strong and
weak convergence. Secondly we show equivalence to the already defined notions of
convergence for our kind of underlying algebraic structures.

Since the limit space of the inductive system is constructed to be the set of Cauchy
nets modulo Null nets it is clear that for every Cauchy net |pg) it follows that
Jo |pe) € K is convergent, as we have seen before. Exploiting this fact about the
limit space motivates the following definition:

Definition 2.19. Let Ag € B(Kg) be a net of bounded operators for © € 3([0,T)).
We say that Ag is:

strong convergent iff V¥ |pg) € Kg Cauchy = Ag |pe) € Ko Cauchy.

—_—

weak convergent iff V|\g) , |1g) € Ko Cauchy = (\g|Agte) € C Cauchy.
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On the algebraic structures we are going to look at, this new version of strong and
weak convergence are equivalent to the prior ones.

Theorem 2.20. Let (Kg, Jzg) be an inductive system of Hilbert spaces. Then the
following equivalences hold: Let © — Ag € B(Kg) be a net of bounded operators,
then we have

Ag 1s strong convergent <= Ag is strong convergent

Ag is weak convergent <= Ag is weak convergent

Proof. We show the two equivalences separately.

Strong convergence:

—_—

Ag is strong convergent by definition iff the net © — |pg) € Ko being Cauchy
implicates that

Ve >036,E € 3([0,T]) s.t. || JzAz |¢=) — Jode |pe) | < €,

i.e. the net © — Ag |pg) being Cauchy. Rearranging this norm above, we see

[J=2Az =) — JoAe [pe)llc = [A=Jze [ve) — Jzo 46 |Po) k.

with a well defined object Jzg |pg) since |pg) is assumed to be Cauchy. Therefore

Ve >036,E € 3([0,T]) s.t. [|[AzJze |ve) — Jzo4e |vo)llx. <€,

but because of the completeness of Kz this net converges too. Furthermore by
corollary 2.16 this is equivalent to

El1>£r(19 |AzJze lpe) — JzeAs |809>”ICE =0,

which is the strong convergence condition for bounded Ag, as seen in theorem 2.18.



18 CHAPTER 2. MATHEMATICAL AND PHYSICAL BASICS

Weak convergence:

The proof for weak convergence works completely analogous, using the equation

(el Anva) = {pslevs)| = | (vo| (TloArTne — HoAzJzo) Yo )|

This term being Cauchy is then equivalent to the /{im being zero for all Cauchy
>E

nets |pe) ; [Ye) € Keo. [

2.4 [P-Spaces and Approximation

In this thesis multiple versions of integrals will arise throughout our limit construc-
tions. We won’t use distinct notation, rather than denoting every integral in the
same way. However, if it is necessary or crucial for our discussion, we will say
whether the integral is meant to be Riemann, Lebesgue or Bochner.

Since Bochner integrals are not part of the standard literature, we will define them
in the following way. Lebesgue integrable functions L”(S, 2, u, K) =: LP(S,K) are
defined for functions f : (5,9, u) — K with K = R or C on a measurable space
(5,9, ). It seems possible to lift this to functions with a more general image space.

Definition 2.21 (Bochner spaces). We define the spaces of p-times Bochner in-
tegrable functions, for Banach space valued functions f: (S, €, ) — (X, ||| x)
via

LP(S’Q’M7X) =: LP(S,X) = {f : (S7Q,M) - (Xv ||||X) ||f||Lp(S,X) < OO}

1/p

with [ flisn = | [M@ORd@ ) ¥ 1<p<o
S

and | flli=sx) = ess supllf(#)llx-

As usual one implicitly identifies functions modulo p-zero sets. Almost all notions
of usual L? spaces extend to the Bochner LP spaces, especially the fact that LQ(S, X)
is a Hilbert space if X is a Hilbert space.

Having this it makes sense for us to define, for example, an object like U €
LP([0, 77, (B(H), [I]l,p))- Another important property about L” functions are their
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subsets. Let us analyze this a bit more carefully. As seen in [RF88][Section 7.4.,
Proposition 10] we have the following statement.

Proposition 2.22. Let [a,b] C R be a closed and bounded interval and 1 < p < oo.
Then the subspace of step functions w.r.t. the (countable) index set I, denoted as

Step; ([0, T],R) := {f 0,7 — R

= Zai Xt tir)r Qi € R} ) (2.9)

iel
is dense in LP([a,b],R) w.r.t. to the p-norm.

This denseness is, by far, the most important for this thesis. A lot of theorems
involving L? functions will be proven on step functions first and then “lifted” using
sequences of step functions converging to general L” elements. If those theorems are
proven on L*, then they automatically hold on test function spaces as well, since
they are subsets of L? for 1 < p < oc.

By tensoring, we can also lift the image space from R to be some Hilbert space K.
The most important dense subspaces are summarized in the following figure:

For 1 <p < oo

Step; (10,71, KC)

N
(L2([0, T], K), [I-ll,) o =#([0,T7, K)
U U

c(l0,T],K) (10, 7], K)

Figure 2.2: Dense subspaces of LF([0,T], K)

Here we wrote for the space of continuous functions C([0,77],K) and denoted the
test function spaces of smooth, compactly supported functions as C:°([0, 7], K) and
Schwartz functions as .#(]0, 7], K).

Some theorems that we will stumble upon, will canonically produce Riemann inte-
grals, we therefore need to mention the following detail: It is known that Riemann
integrals are defined via converging sequences of upper and lower sums. One can,
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however, generalize this idea from sequences to nets. In the case, where we con-
sider integral decompositions as the directed set behind our nets, i.e. (3([0,77), C),
the basic motivation behind the Riemann integral seems preserved. Indeed, it is a
fruitful idea to define for o : [0,7] — C

/ oy dt= Ty Y ra(t), (2.10)

©e3([0,77) ie1(0)

if the “upper and lower sums” on the right hand side converge. It is quite easy to
see, that this convergence is guaranteed using, for example, piece wise continuous
functions a(t).

2.5 Evolution Systems and Master Equations

Master Equations and Lindbladians

Master equations arise naturally in many body physics and applied science like
chemistry and biology. They provide a method to understand the dynamics of a
system with many possible states and transitions between them.

In contrast, a quantum master equation is a more general notion, because nor-
mal (or classical) master equations are first order differential equations of transi-
tion probabilities. In a quantum theory, those would correspond to the diagonal
elements of a density matrix, but a quantum master equation is a set of differential
equations of the full density matrix and therefore also describes decoherence and
entanglement.

An important example for a quantum master equation, describing so-called Marko-
vian systems, is the Lindblad equation. A system is called Markovian, if it fulfills
the Markov property, i.e. given a state at time ¢, then the evolution is completely
determined by this time and does not depend on any time ' < ¢. The system is in
a certain sense “memoryless”. It was shown in [Dav74] that all master equations
describing a system, being weakly coupled to its surrounding, must be Markovian.

But before we analyze Lindblad equations in greater detail in the next chapter we
need to define some other preliminaries.
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Semigroups and Evolution Systems

Semigroups and their generators have been studied a lot in the last years and
their application to quantum mechanics, and theoretical physics in general, yielded
extraordinary results. Especially when trying to formalize time evolution, those
notions arise quite naturally as we will see now.

Definition 2.23. Let (X, ||-||y) be a Banach space. A map U : R, :=[0,00) —
B(X) with the properties

i) U(0) = 1y,
i) Ult+s)=U(t)oU(s) Vs, teR,,
15 called a one-parameter semigroup, or just semigroup. Since the spaces

B(X) and X canonically carry topologies and additional algebraic structures as
well, one can define some more concepts on a semigroup by defining that U is

uniformly continuous if 1i\r% |U() —1x|,, = 0.
t
strongly continuous if 11{‘% WUt)r —z||, =0 VreX.

contractive if [|U(t)]|,, <1 for 0<teR, .

unital if U(t)(1x) =1x VteR, .

Whenever the limit

1
Gw:l%E(U(t)_l)ax (2.11)

exists we call G the infinitesimal generator of the semigroup. In the uniformly
continuous case the generator exists on all of X and one can recover the whole group
via its generator by defining

U(t) = % = f: G (2.12)
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Evolution systems” are in a certain sense just the two parameter version of semi-
groups, as one can see fairly easy:

Definition 2.24. Let (X, ||-||yx) be a Banach space and 0 < r < s <t e R. A
two-parameter family of maps E(s,t) : X — X is called an evolution system

iff:

(2.13)

An evolution system is said to be

norm continuous: iff (s,t) — E(s,t) is almost-everywhere continuous
w.r.t. the operator norm on B(X).

strong continuous: iff (s,t) — E(s,t)(B) is almost-everywhere continu-
ous for all B € X w.r.t. the norm topology on X.

contractive: iff |E(s,t)[| <1 V0<s<t.

unital: iff E(s,t)(1x) = 1x.
And if, additionally, X has a predual space, denoted by X,, then E(s,t) is called

weak-* continuous: iff (s,t) — poE(s,t)(B) is almost-everywhere con-
tinuous for all p € X, and B € X.

All those notions can be extended to unbounded evolutions,” restricting the domain
to a (dense) subspace D C X.

The continuity of the semigroup/evolution system is a very crucial information,
mostly seen in the existence and form of generators, which we will analyze in the
upcoming section.

3Physicists also like to call evolution systems “propagators”, especially in the background of
time evolution in QFT.
4Except norm convergence, which is clearly not defined in this case.
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Norm Continuous Semigroups

Probably the most important theorem concerning norm continuous semigroups is
the following.

Theorem 2.25 (Lindblad theorem). Let H be a separable Hilbert space and E(t) :
B(H) — B(H) fort > 0 be a norm continuous semigroup of completely-positive
and unital maps. Then one can find bounded operators K : H — H and L : H —
K @ H, where K is a separable Hilbert space, such that the generator L of E(t) is
given by:

L(B) = K'B+BK+L'(1x®B)L

fn o (2.14)

for B € dom(L) = B(H). On the contrary, every operator satisfying these two
equations generates a completely-positive unital and norm continuous semigroup.

The key significance about this theorem is that it reduces the complexity of finding
quantum channels from characterizing operators on the whole observable algebra
B(H) via a few bounded operators on H.

Strongly Continuous Semigroups

In open quantum systems strongly continuous semigroups of completely positive
maps are of key importance and often emerge as the natural description of most
physically interesting systems. The study of those semigroups is therefore a field
of active research for decades. Surprisingly, there is no direct analogue for the
Lindblad theorem for this case, but some strong partial results, especially regarding
gauge symmetries, exist. The following theorem would be the easiest and most
comprehensive statement, about unbounded (and therefore not norm continuous)
Lindbladians.

Theorem 2.26. Let H and KC be Hilbert spaces, K being separable. Furthermore
let K : H D dom(K) — H be the generator of a one parameter contraction
semigroup and L : dom(K) C dom(L) — K ® H being an operator satisfying the
infinitesimal conservativity condition

ILy|* < —2Re ($|KY) Y [4) € dom(K). (2.15)



24 CHAPTER 2. MATHEMATICAL AND PHYSICAL BASICS

Then there exists a unique weak-* continuous contraction semigroup E,;.(t) on
B(H) called the minimal solution, solving the Cauchy equation

B )(BYY) = (WL Ein1)(B))). (216)

where the generator L is determined by

(VIL(B)Y) = (K| BY) + (| BKY) + (L (1x © B) L)) . (2.17)

Proof. One proof is outlined by Alexander Holevo in [Hol95b] and should not be
subject of this thesis. ]

One can easily see that the resulting Lindbladians get way more complicated having
only strong convergence. Learning more about the behavior of those evolution
systems is still a field of active research.

As in the case of semigroups, where one can define a generator, one can define
two different generators corresponding to an evolution system. Those, usually un-
bounded, operators are in most cases related via some initial conditions, but can,
however, be arbitrarily wild after all.

Gauge Symmetry of Lindblad Equations

The main idea of exploiting the gauge symmetry of the Lindblad equation and its
relation to semigroups was first formalized by Alexander Holevo in [Hol95a]. It is
obvious that, given a Lindblad generator £, the choice of operators L and K is far
from unique. More precisely:

Definition 2.27. Let K(t) : H O dom(K) — H and L(t) : dom(L) — K @ H
define a Lindbladian as in equation (2.17).

For every t € [0,T] let z(t) € R, |A(t)) € K and U(t) € B(H) be a unitary
operator valued function. We say the following family of operators constitutes a
gauge shifted Lindbladian with gauge triple (U(t), |\(t)),x(t)):

L(t) = (U(t) @ 1y) L(t) + |A(2)) @ 14 (2.18)

K(t) = K(t) - %H)\(t)HQ - (U] @ 15,) L) + ia(t)15 (2.19)
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Explicitly calculating £(t) shows that it is identical to £(¢) when acting on ar-
bitrary vectors, ie. (p|L(B)y) = <gp Z(B)w> for all 1) ,|¢) € dom(K) (see
[Neulb][Lemma 3.11., p. 53].).

It is way harder to proof that dom(K) = dom(K) and that £(¢) is actually a stan-
dard Lindblad generator. One also needs to show whether the associated Cauchy
equation is solvable or not, or whether the function ¢ — L(t) is still continuous.

For arbitrary gauge triples this would not be the case. We need to add more
structure in the following form to fulfill all the mentioned requirements.

Definition 2.28. Let (U(t), |A\(t)),z(t)) be a gauge triple. We say the gauge triple
15 continuously differentiable iff the function:

IA(t)) : [0,T] — K, t — A(t) s cont. differentiable
t):[0,T] — B(K), t— U(t) is cont. differentiable in the strong topology
t): [0, 7] — R, t— xz(t) s cont. differentiable in norm

Having this it can be shown that:

Lemma 2.29. Let (U(t),|A\(t)),x(t)) be a continuously differentiable gauge and
assume that dom(K(t)) = dom(K(0)) for all t € [0,T] and set D = dom(K (0)).

The family of gauged operators K(t) generates an D-valued evolution system and
the Cauchy equation with Lindbladian L possesses a minimal solution.

Proof. The proof can be found in [Neul5|[Lemma 3.13., p. 53]. O

In this thesis the evolution of an open quantum system will be given by a quantum
channel, i.e. a positive and unital (resp. trace preserving) map between operator
algebras, i.e. the algebra of states (resp. the algebra of observables). The two dif-
ferent notions come from the distinct ways of describing an evolution of a quantum
system, that is Heisenberg, or Schrodinger picture. In this thesis the Heisenberg
picture will be used more often, so a quantum channel maps from the bounded
operators of a Hilbert space B(H) into itself.
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2.6 The Stinespring Factorization Theorem

The Stinespring factorization theorem is an important result of operator the-
ory, proven by W. Forrest Stinespring in 1955 (see [Sti55]). It shows that every
completely positive map between C™-algebras A, B can be written as a concatena-
tion of two maps of the form:

i) A “-representation 7 of the C*-algebra A using some auxiliary Hilbert space
KC, i.e. a *~homomorphism

m: A— B(K).

ii) An operator map of the form X — VXV with a map V : A — B(K).

This theorem is extremely important, since it fully characterizes the form of every
completely positive map between C*-algebras, i.e. quantum channels, via some
bounded operators and an auxiliary Hilbert space. The relevance of this theorem is
in this sense comparable to the Lindblad theorem. Introducing this more formally,
we have:

Theorem 2.30 (Stinespring Factorization Theorem). Let H; and H, be Hilbert
spaces, and let I@,@ : B(Hy) — B(H,) be completely positive normal unital maps.
Then there exists a separable Hilbert space IC, called the dilation space, with
identity operator 1 and an operator of the form V : H, — K ® Hy such that:

i) For all B € B(Hy) we have E(B) = V(1x ® B)V.

it) V and IC can be chosen minimal. In this case:

K®Hy =3pan{(1c ® X)V @) | ) € Hi, X € B(H,)}, (2.20)

and for any non minimal dilatioan/ cH, — K® ‘H, there exists an unique
isometry W : K — K, such that V' |¢) = (W @ 13,))V |¢) for all |¢) € H;.

i) If@ —F is completely positive and the Stinespring dilation of E is given by

E(B) = V(1 ® B)V (2.21)

then there exists an unique positive operator F € B(K) with 0 < F < 1,
such that F(B) = VI(F @ B)V. This property is called the Radon-Nikodym
property of the Stinespring dilation.
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A proof for the Radon-Nikodym property can by found in [Rag03][Corollary 3.2].
There is an important alternative in the formulation of the Stinespring theorem
using so-called Kraus operators. If one fixes an (at most countable) orthonor-

mal basis of K, i.c. {|a) € K| eI} with 1 = Y |a)a|, [EK98] has shown the
ael
following identity:

Corollary 2.31. Under the assumptions of theorem 2.30 one can find a family of
operators V,, : Hy —> Hy for countable o € I s.t.

E(X)=> VixV, (2.22)

acl
and the sum converges in weak-x topology.

The connection between both descriptions can be seen easily, since by fixing a basis
|a) of IC one can construct a Stinespring isometry V' via the Kraus operators V,, as
follows

V:H, — K®H,, |©) r—>Z|a>®Va|g0). (2.23)

ael

The Stinespring factorization theorem had even wider consequences, regarding the
modern formalism of measurements in quantum information theory.

2.7 Measurements in Quantum Mechanics

The Radon-Nikodym relation is remarkable, since this property gives rise to a
certain one-to-one correspondence between quantum channels and measurements.
More formally:

Given a resolution of the identity on K there exists a decomposition of any quantum
channel E € €P(B(H,), B(H,)) with Stinespring dilation E(X) = VI(1x @ X)V
into the following form using Kraus operators

E(X) =) E. (X):=) VIXV,. (2.24)

acl ael
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We can find (see [Rag03][Theorem 3.3]) unique positive operators E, € B(K) with
Z Ea = ]13(;@ s.t.

ael

E.(X)=V(E,® X)V. (2.25)

This decomposition motivates the definition of a POVM.

Definition 2.32. A positive operator valued (probability) measure, or short
POVM, over the measure space (2, F) and Hilbert space H is a map M : F —
B(H) satisfying the following conditions

i) M(F) >0 for all F € F and M(0)) =0,

it) M is o-additive in the weak-x topology, i.e. for countably many mutually dis-
joint sets F; one has

tr(pZM(E)) =tr (pM (UFZ>> VpeZI(H),
iii) M is normalized, i.e. M () = 14.

POVMs are often used in the theory of continuous measurements and were first
described by Davies in 1976 (cf. [Dav76]). In the standard formulation of quantum
mechanics this would simply correspond to observables being self adjoint operators,
which implies that 2 C R and M being the spectral measure, s.t. any self adjoint
operator A can be written as

A= / » M(dz).

a(A)

In the case that we have a continuous spectrum, s.t. the integral doesn’t reduce to
a sum, we adapt the notation M (dz). The notation will be made clear when we
define counting statistics.

Remark: The most common kind of POVM in this thesis will be given by a set
of positive operators M, with ¢ € €2, summing to the identity. Proofs, however,
will rely on the abstract definition. If all the operators involved are projections the
POVM will be called a projection valued measure (PVM).
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2.8 Representation Theory of the CCR Algebra

As we will see, the Weyl CCR is going to play a major role in the upcoming analysis.
Therefore we briefly collect some of the key aspects about its representation and
look at a certain example of quantum channels related to this subject.

In the following discussion we need to distinguish between two similar notions,
that of the CCR algebra and that of the CCR C™-algebra. We briefly discuss
both approaches. Since both notions are related to the phase space we need some
symplectic structure before.

Definition 2.33. Let (Z,0) be a symplectic vector space like in definition 2.5.
(2,0) will be called the phase space, in analogy to the classical phase space
(R* {-,-}) with the Poisson bracket.

The Weyl CCR is now an irreducible representation of this symplectic space over
some Hilbert space obeying certain properties.

Definition 2.34. Let W be an irreducible representation of the Weyl commu-
tation relations (Weyl CCR) on = over a Hilbert space H, i.e. a strongly

into the unitary operators on H,

continuous’ map W : (2,0) — <B<H)7 ”'Hop

satisfying

VémeE. (2.26)

By the Stone-von Neumann theorem (cf. [Neu3l], [Sto32]) we know that all irre-
ducible representations of the Weyl CCR are unitary equivalent to the Schrodinger
representation® which is given by the usual multiplication and differentiation op-
erators () and P. The relations (2.26) then reduces to the well known equation
Q,P]=1il.

A more abstract viewpoint is given by constructing a C*-algebra of elements obey-
ing the CCR and then search for irreducible representations. The structure and
notation will be based on [Pet90].

’Note that on the set of unitary operators the strong and weak operator topology coincide.
6 After restricting the representation space, i.e. L2('H)7 to the dense subset of smooth functions
with compact support.
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Definition 2.35. We denote the C"-algebra of objects satisfying (2.26) over the
symplectic space (Z,0) as

COR(Z,0) = {W(€)|€ € E}. (2.27)

We then look at (continuous) representations w : CCR(E,0) — B(H) with some
Hilbert space H. Note that we are interested in strong or weak continuity, since
norm continuity would be too restrictive as we will see now.

Proposition 2.36. Let n # £ € =, then

W) —=w©l,, = v (2.28)

op —

For the sake of presentation we omit the proof of this proposition and also state
that the algebra CCR(Z, o) is well defined and unique up to isomorphisms for every
non-degenerate symplectic space.” Note that if = is a complex Hilbert space, then
o(&,n) = Im (£|n) is a non-degenerate symplectic form on the R-linear span of = as
we have seen in definition 2.6.

As a conclusion of the proposition one sees that the one-parameter unitary group
t — W (t€) is never norm continuous and that the C*-algebra CCR(Z, o) is there-
fore never separable.

States and Fields

We recapitulate Stone’s theorem from [Sto32].

Theorem 2.37 (Stone). Let (U,);cr be a strongly continuous one-parameter unitary
group. Then there exists a possibly unbounded self adjoint operator A : Dy — H,
s.t.

U =e"  VteR (2.29)

Conversely, every (possibly unbounded) self adjoint operator induces a strongly con-
tinuous one-parameter unitary group by the same formula.

"The interested reader may find the proof in [Pet90][Theorem 2.1, Proposition 2.2].
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We can now look at a representation m : CCR(Z,0) — B(H) of the CCR algebra
on a Hilbert space (#, (-|-)). If the map

t— (m(W(t€))z |y) x,y € H (2.30)

is continuous, then by Stone’s theorem there exists a self-adjoint operator B (£),
s.t.

T(W(tg)) = exp(itB,(£)), t € R. (2.31)

B, (&) is called field operator and since W (t£) is not norm continous, B, () must
be unbounded. The representation 7 is called regular, if B, (£) exists in the test
function space (with values in ‘H) for all . If the representation 7 is clear from
context we omit the 7 index in our notation and look at W (¢) as being already
represented.

For now, let us fix a regular representation 7 and compute the various commutation
relations between Weyl operators and field operators. These can be obtained by
formal differentiation w.r.t. some generic real parameter t.

Theorem 2.38. For {,m e = andt € R the following relations hold on Dy :

i) Br(t§) =tB,(¢)

it) Br(§+mn) = B(§) + Bx(n)
iii) [B(£), W(n)] = o(&n)W(n)
) [Br(§), Bx(n)] = —io (¢, n)1

Here the forth equation is known as the usual CCR for field operators.

Proof. Since the involved formulas are quite long, the proof is shifted to the ap-
pendix A.1. n

If we have a complex structure J on = we can define a creation operator B and
an annihiliation operator B~ via the field operator as

B (€) = 5 (B (J€) FiBx(€)). (2.32)

N —
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Is the complex structure given by the usual imaginary unit ¢, then equation (2.32)
reduces to the familiar form of creation and annihilation operators commonly seen
in advanced quantum theory books as

(—iB, (&) + B.(if)) . (2.33)

N —

(iBn(€) + B.(i€)) and a'(¢) =

N | —

a(§) =
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Chapter 3

Theory Of Continuous
Measurement

We now have everything we need in order to define a limit process of discrete time
evolutions. We split this analysis throughout this chapter into multiple smaller
steps.

3.1 Concatenating Discrete Dilation Spaces

Let © € 3(]0,7]) be an interval decomposition and i € I(©) an arbitrary index.

Furthermore let E; € €B(B(#H)) be a family of unital completely positive maps, so

that IEZ naturally describes a discrete time evolution. By Stinesprings factorization
theorem 2.30 one can construct another family of maps for every time-step

E; € €R(B(K; @ H), B(H)),

such that E; describes the evolution in the time-step ¢ and all possible measurements
compatible with this evolution." These maps are ultimately of the form

E.(X)=V'XV, with V;:H — K, ®H.

To extend this definition to the full interval [0, 7], one simply defines how to con-
catenate those maps:

"Note that we are going to assume B(K; ® H) = B(K;) @ B(H).
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Definition 3.1. Let H, K, K,y be Hilbert spaces and E; : B(K;) @ B(H) — B(H).

We define the “concatenation” as
B oK, : B(K:) ® B(Ky) ® B(H) — B(H),
E, oKy :=E, (1gpc,) ®Es) . (3.1)

Likewise, one can define this at the level of dilation spaces with V; : H — K; @ H
via

%O%ZHHI(A@’CQ@H,
Vo Vi i= (Le, ® Va) Vi (3.2)

Iterating this arbitrary times directly leads to

ﬁEi :B(él@-@?—[) — B(H), ﬁEz ::TﬁEiOEn (3.3)

=1 i=1

n n n n—1
[Iviix— QK o [TVi=v.o]]v (3.4)
i=1 i=1 i=1 i=1

It is easy to see that since the iteration of maps is associative, it preserves the
structure of Stinespring dilations in the following, natural way:

Lemma 3.2. Given concatenated channels as in the definition before and for all
0<i<n withie I(©) we have B;(X) = VI XV;, then we have

n

n T n
[[E:x) = (H v;) X (H Vi> . (3.5)

i=1

3.2 Limit Space Construction

The following construction relies on the work Bernhard Neukirchen did in his Ph.D.
Thesis [Neul5|. His aim was to construct a Hilbert space for cMPS via a continuous
version of dilation spaces. Starting with discrete time-steps, his work had three
major assumptions:
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i) A single time-step has either a single event or none.

ii) The quantum mechanical description of an event is independent of the length
of the time-step.

iii) Obtaining multiple events just means to concatenate the single event construc-
tion.

Translating those assumptions in the mathematical background of quantum me-
chanics means, that i): the corresponding Hilbert space of a time-step consists of
a “no-event” part, which is simply given by C, and a non trivial part given by a
separable Hilbert space ;. Part ii) means that the IC; do not depend upon the
time-step i, so K; = K Vi € 1(©). Part iii) then simply tells us, that the Hilbert
space of multiple events is just the tensor product of the single event Hilbert space.

The following figure intuitively shows the concatenation of discrete measurements
w.r.t. an interval decomposition.

B — B — B — B —
vl B b B, o] B, b B, s
e — } } } }
0 ] to t3 T
A A A A
B % B % B % B % B
VWA E; WW Ey VY Es A\ Ey4 VaVavVa4
e —+ } } } —
0 ] to t3 T

Figure 3.1: Composition of channels via an interval decomposition © € 3([0,T]).

As described above, the following choice of discrete Hilbert spaces seems natural to
our assumptions: Let (3(]0,77]), C) be the directed set of interval decompositions
and let K be a separable Hilbert space. We define the Hilbert space corresponding
to an interval decomposition © € 3([0,77]) as

Ko = ) (CaK).

i€1(©)
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Assume that = € 3([0,77) is a finer interval decomposition than ©.
We denote by Z|; the interval decomposition of [t;_;,t;] for i € I(©) given by
{tj cZ [t 1<t < ti}. Then it is easy to see, that

Ke= Q) K. (3.7)

i€1(©)

Let |0) be a distinguished “no-event” basis vector in C and |a) € K. In analogy
to [Neulb] we use the following shorthand notation for a single event happening in
one subinterval

10) 0 10)

a@k) == | X) ® 2 & € Ko. (3.8)

i<ker©) \ U |a) isker@) \ 0

Using this notation we can define operators J; : C® K — Kg, Vi € I(©) with
Ti - t’L - ti—l Via

0 o

JEI(EL)

s.t. one can define embeddings between interval decompositions

JE@ . ]C@ — ’CE, JE@ = ® ‘]z (310)
1€1(0)

This way, one can compare different Hilbert spaces with each other.
Lemma 3.3. Jzg is an isometry between Hilbert spaces and Jrng = JrzJzg, i-€.

the Jzg form an inductive system of mappings.

Proof. Since Jzg is defined as the tensor product over the subintervals we restrict
ourselves to one subinterval. The scalar product between two “no-event” embed-
dings is trivial, so we start with the action between “no-event” and “event” vectors:
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OFY | {10}
0 0

|
<
m
=
(7]
Il
—
—
- =
~_—
—
3 o
- =
~_—
—

L

=1 =0 at j-th factor

Now let |a),|B) be arbitrary event vectors, then we have

0 0 .
<% J, >—- ,/Tﬁ:a@ﬂﬁ@k 3 I (a@j|paj)
) |8) Jk:ef( B jer@l)
= 5&,3 Z T = 6(15

JGI ls)
Via extension by linearity the statement is proven. O]

The obvious construction of a limit space is now a bit compelling, but the Hilbert
space structure would get lost by simply taking the inductive limit with the afore-
mentioned embeddings Jzg. The inductive limit space would only constitute a
Pre-Hilbert space so one has to take its norm closure:

Definition 3.4. Let © C = € 3([0,7]). We define the limit space as the norm
closure of the inductive limit of the system (Kg, Jzg), i.e.

]C[O,T} = J—hm IC@. (311)
—
©€ 3([0,17)

Ko, is a Hilbert space and we denote the canonical embedding into the limit space
by J@ : IC@ — IC[O,T]'
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3.3 Exponential Vectors and Fock Space Isomor-
phism

An interesting subset of this (quite abstract) limit space are the so-called exponen-
tial vectors, since they obey some interesting properties as we will see in this section.
Because of their denseness in K7y and other reasons those vectors (defined in a
similar fashion) are used quite often in quantum stochastic calculus (QSC).

However, before we can define the exponential vectors and check their convergence
properties we need to get our head around a peculiar fact, i.e. the term |\(¢;)) with
IA) € L*([0,T], K) is a priori not well defined because of the quotient space structure
of L. We therefore restrict ourselves to the dense subspace of step functions first
and then lift this notion to a definition on the full L? space.

Hence, let |\) be a K-valued step function w.r.t. to some interval decomposition
© € 3([0,T]), i.e. |A) € Stepy(e)([0, 7], K), which can be written as

|)‘>: Z A

1€1(0)

X[ti,17ti>(t)> with A, € K. (3.12)

Those step functions are a dense subspace of LP([0,T], ) as seen in figure 2.2 for
vel } are

every 1 < p < oo. Note that the step functions {fz(t) = \/L?ix[tiflati)

obviously orthonormal in L*([0,T],R) for some discrete index set I.

Using this orthonormal set we can define a discrete step function version of the
exponential vectors acting on proper L* functions.

Definition 3.5. Let |\) € L*([0,T),K) = L*([0,T]) ® K and © € 3([0,T]), we
define the discrete exponential vector to be

1 1

o0 & \wrorom) "B \Sue e

«

€ Ko.

In the latter equation we have written the scalar product in terms of some basis
{lea) € K| a=1,...,dim(K)}. Furthermore we denote the projection onto the step
functions w.r.t. a given interval decomposition as

Py : L*([0,T],K) — L*([0,T],K)
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Po(IN) = Y (IL@OXAEB] @ 1) [A). (3.13)

i€1(©)

We therefore have Step;g)([0,77,K) N L*([0,T),K) = Po(L*([0,T],K)). The
Hilbert space embeddings Jzg, the outlined refinement limit is based upon, in-
herit a certain type of averaging operation between different time-steps, as we will
see in the upcoming chapters. The following notational shortcuts will come out
handy.

Notation 3.6. From now on we will denote xy, .y simply as x;. Furthermore
we would like to use the tensor product structure of LP([0,T],KC) and rewrite our
functions |\) € L*([0,T],K) in the following way:

IA) = |Ac) ® |A\c)  with |Ac) € L*([0,T),C) and |\¢) € K. (3.14)

Therefore, whenever we will encounter an L?-function |\) with values in some
Hilbert space IC, we will write |)\Z> € IC defined as

— 1
X)) == ((xal @ L) [N = Ac(t)x; dt @ 1 [Ak)

l

;1||—
o\ﬂ

:Tl/)\c(t)dt ), (3.15)

i
ti1

i.e. we denote |X> € K as the average value of the L*([0,T]) part of |\) in the
subinterval [t;_,,t;) multiplied with the K-valued part.

Using this notation we can rewrite the discrete exponential vectors in an easier
fashion as

1
leg(N)) = . (3.16)
zg)) \/Fz ‘)‘l>

We now need to show well definedness of a limit object of those vectors.



40 CHAPTER 3. THEORY OF CONTINUOUS MEASUREMENT

Theorem 3.7. The net © — Jgeg(|A)) € Ky r converges strongly. We denote
the inductive limit as

le(V) = lim ee(A)).

©€ 3([0,71)

For all |\, |u) € L*([0,T],K) those vectors obey the following exponential prop-
erty:

(eWle(n) == lim  (eg(N)]ea(n)) = ™. (3.17)
©e 3([0,17)

Before we prove this theorem we need the following lemma.

Lemma 3.8. Let © € 3([0,7]) be an arbitrary interval decomposition and o €
Pg (L2([O, T], (C)) be a C-valued step function. Then the following equation holds

T

im ] (1+na(t) = exp /a(t)dt | (3.18)
©€3([0,T]) jer(©) 0

The integral on the right is meant to be the usual Riemann integral.

Proof. First we need to rewrite the Riemann integral in its discrete form, i.e. we
use the defining property of Riemann integrals for step functions

iy Y ma(t) = [ atdt

SIS 3([01T]) i61(9)

as explained in equation (2.10).

Using this, taking the logarithm on both sides of equation (3.18) and analyzing this
on some fixed © € 3([0,7]) we have

log H (1+m7a(t)) | = Z log(1 + 7a(t;)) = Z To(t;)-

i€I(®) 1€1(©) 1€1(O)
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Since we consider a refinement limit we may assume 7; < ¢ and therefore use

1
2
y y=tx t./I/‘
log(1 — x| = dy| "= dt
[log(1 + ) — ] ( ) T4y Y /1+m
0 0

- / ‘2‘/|1+tx|

0
Substituting = = 7;(t;) we see that the denominator |1 + ¢ 7;a(t;)| could, for a
specific choice of a(t;) and 7;, equal zero which would make the integrand impossible
to bound from above.

However, since we analyze this expression in the inductive limit where all 7, — 0,
there is going to be an interval decomposition fine enough such that |1 + ¢ 7;a(¢;)]
can be bounded from below, i.e. never becomes zero in this limit, which is equivalent
to |na(t;)| =9 < 1.

W.l.o.g. this interval decomposition will also be denoted by © € 3([0,T]). Further-

more let C,, = sup |a(t)| be an upper bound for |a/, then we have
t€[0,T]

T; €

1-46

t

Now, taking sums of those terms, and using the triangle inequality, we encounter
an upper bound

CZE C2e
< Z [log(1 + ma(t;)) — ma(t)| < T d mi= T

and hence, analyzing this in the inductive limit, we obtain

limy H L+7a | = ) rat)| =0

Oc 3([077’]) iel(® i€l(©)
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We can therefore finally conclude

T
lim H (1+7ma) = lim  exp Z ma(t;) | =exp /&(t)dt ,
©€ 3([0,1]) ic1(®) ©¢€ 3((0,17) i€I(©) 0

which proves the statement. O

Using the denseness argumentation in figure 2.2, we can lift this lemma to piece wise
continuous functions « : [0,7] — C, since those are the most general functions”
for which the Riemann integral exists. The following corollary will be a direct
consequence of this lemma.

We have now seen that products of the form 1+ 7;a(¢;) converge to the exponential
function in the inductive limit. This linear order of 7 is a necessary condition
for this limit to converge without being trivial. The following identity shows this
mathematically

Corollary 3.9. Let k > 0, then

liﬂ H (1+ 7 a(t)) = 1. (3.19)
©€ 3([0,7]) icr(®)

Proof. Completely analogous to the prior proof we would like to show that the
following difference becomes small:

log H 147 a(t) | —log(1)| = Z 10g(1+72-1+”a(tl-))
i€1(©) G i€1(©)

< Z |10g(1+7’1-1+”04(ti))|.

i€I1(©)

We therefore concentrate on showing

|10g(1 + Ti1+”a(ti))| <e—0.

2 1.s . 2.
Taking denseness in L~ into account.
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To bound this logarithm we obtain for |z| < 1

xT

1
1 1 ||
loat1 ) = | [ | = e [ —’x'/u )
0

0

The same argumentation as before (but now Wlth d=lz| = ‘71+“a(ti)|) guaranties
that we can bound this integral by (1 — 5) for some interval decomposition fine
enough. Using 7; < ¢, C, > || and since taking the (1 + k)’s power is a strictly

. . . 1
increasing function 7, " = 7, 7* holds, we conclude

> log(l+7at)| < Y n M alt) |/|1+t e ')|dt

i€1(©) i€1(©)

27701_5_

i€I(© ZEI (©)

TC

Therefore the desired logarithm tends to zero which proves the statement after
exponentiating both sides. O

It should be noted here, that if one would try to analyze the limit with 1 — x the
resulting expression would not be well defined. Having this, we can now prove
theorem 3.7.

Proof of theorem 3.7. We split the proof in two parts, we begin with the well-
definedness.

1. Convergence: To check strong convergence we need to show that

Iim [le=(A)) = Jzo leo (A} = 0 for all |3) € L3(0, T, K).

Since we are calculating the norm on Hilbert spaces we can look at the norm square
and use [la — b||> = ||a||* + ||b]|* — 2Re (a|b). Since Jzg are isometries, the first
two resulting terms are the same, i.e. ||leg(A))||* = ||Jze |eo(N))]|*. We begin with
those terms
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) 1
lle=)II* = (e=(V)]e=(A)) = { X)

1
ierm \V7i [A) i§> (\/Fz |X2>>>

1 1 o
I (f m) (w |x->> )= TR

The scalar product 2 Re({e=(A)|Jzgeg(A))) is a bit harder. It will be helpful to note
that tensor product terms of the following form will cancel, since the j-th site will
always contribute a zero when taking the scalar product of both terms, i.e.

<® (;) > \a@j)> =0 Vl]a)eKk.
i€l(2) JEI(E)

Using this we have

1 1
(e=(N)|Jze0(N)) = < — J; — >
kel(2) (\/T_k: )‘k>> (iel(e) ) (ig) (ﬁ )‘z>)

X ( ®|‘) (;) + Y vm [hak) >

\/Fk‘)‘k> i€l(®) \kel(E kel (Z];)

(
| ( P = ((1)) Y w—km@k>>
(

Vi ‘)‘k> kel(=

) kel(El;)
1 1 0 0
N z'ell_(Ie) keI(E|;) |: (O (O) > ' < (ﬁ |Xk>) (\/T_k |Xk>) >]
~ I a+n ).
i€l(2)

Therefore the desired norm difference becomes

lim [[[e=(A)) — Jze ea(A))]| = 0

E>0
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for all [\) € L*([0,T], K), which proves the strong convergence. Since those vectors
are well defined in the inductive limit, we can now prove the second part of the
lemma.

2. Exponential property: We restrict ourselves again to step functions |\)
and |p) which canonically induce interval decompositions ©, and ©,, i.e. |A) €
Po, (L*([0,T],K)) and for |u) respectively.

Since we are dealing with an inductive limit we can assume that all interval decom-
positions © we construct our limit upon are finer, i.e. © C ©, U©,,. Note that on
those interval decompositions the L*([0,77]) tensor factors are locally constant:

N =) @)= D NIx)®IA); A\ eC
JEL(®)

M— Xz|®]llc)‘)\>:_ 3Nl @ ) = A A -

' je1(®) =6,

Therefore we have that

(M) = Oelue) Oeline) = Oelpe) D /)\c “pue(t
zEI(@)t "

= (\lu) D mid (3.20)

1€1(O)

Using lemma 3.8 we see

{e(N)]e(n)) et hg (ee(N)]ea(p)) = 1,113 H (1+Ti<xi‘ﬁi>)

©e 3([0,1)) ©€ 3([0,1]) ic1(®)

= lim [T A Oli))
©€3([0,77) icI1(0)

€ 3([0,77) i€I(9)

Using the denseness of step functions in L*([0, 7], K) completes the proof. ]
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To see that the exponential vectors do not constitute a small subset of Ky 7} is of
key importance. In fact their C span is all of Ky 7. More formally:

Theorem 3.10. The Q linear span of exponential vectors |eg(N)) is dense in Kg.
Furthermore we have that the C linear span of |eg(N)) equals Kg.

Proof. Since Kg and |eg(A)) have the same tensor product structure it is sufficient
to show denseness on one factor. That means we need to show that

spang {16 V7 [R)} = Co K.

which would certainly not be true if the image of |[A) at the i-th subinterval would
not span all of IC, but since K is constructed as the minimal dilation space, coming
from Stinesprings factorization theorem, this can not be the case. Therefore the Q
linear span of 1® ,/7; |X1> is dense in C & K, since Q is dense in C and the theorem
is proven. O]

The existence of exponential vectors is a strong hint for our limit space to have
some structural similarities to Fock space. Those kind of isomorphisms are heavily
used in quantum stochastic calculus. We shall briefly explain the basic idea:

One can show, as seen in [Neul5|[Theorem 6.22, Theorem 6.23], that the limit space
Ko, 1s isomorphic to the bosonic/fermionic Fock spaces, i.e.

Koz = é L*(A,,K) @ K¥* =T, (L*([0,T],K)), (3.21)

n=0

with the Fock space functors I'y and the set of ordered n-tuples A,. The isomor-
phism is meant to be in the sense, that there exists a canonical unitary equivalence
on the n-particle level. A more detailed analysis of this isomorphism can be found
in [Sie]. We will work with the Bose Fock space, rather then with the Fermi Fock
space, since we already analyzed the CCR and not the CAR. A fermionic analysis
is, nevertheless, quite an interesting field of research.

3.4 Operators on Kg

Since g is just a finite tensor product of Hilbert spaces we can define operators on
it. We will usually denote operators in a special form, using a crucial but necessary
approximation.
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Definition 3.11. Let c € C,|\), |u) € K and U € B(K), then we denote

A
|c> <U| eBCaK) with (a,|v))— (ac+ A\|v),alu)+Ulv)). (3.22)
1
We now assume that B(Kg) = B ® Ca kK ® B(C & K). One can

i€1(0) 1€1(0)
therefore approximate every operator X on Kg via

N
~) @ in with Uy, € BC®K) and N € N. (3.23)
el(e

n=1

We will always assume that every operator of physical interest will have such a
tensor product form, since anything else but this would seem pathological. A class
of operators with special importance are those with an operator A € B(C & K) in
a single time-step.

Definition 3.12. We extend our “Qi” notation in the following way to operators
acting on bosons

(Aai) = Q) Teex | @A@ | K) lcex | € B(Ko) (3.24)

k<i€I(©) k>icl(©)

and on fermions respectively

(Aai)_ = | &) by A® | X leex | €B(Ke).  (3.25)

k<icl(©) 0 —lIg k>iel(©)

One is now able to define nets © — Xg € B(Kg) and analyze their convergence
properties. Later on we will see necessary conditions for the data (¢, |A), |u),U) of
those operators to converge w.r.t. certain topologies.
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Chapter 4

First Definitions of FCS and
cMPS

In this chapter we will shortly collect the definitions of “Finitely Correlated States”
(FCS) and “continuous Matrix Product States” (cMPS) in their original form. We
will rewrite the FCS in the continuous measurement formalism which will motivate
a strategy for redefining cMPS, using the inductive limits already discussed.

Note that the term “Matrix Product State” (MPS) is taken synonymously for FCS,
since MPS are just FCS written w.r.t. specific choice of basis.

4.1 Finitely Correlated States (FCS)

FCS were first defined in [FNW92] as a model for interacting quantum spin chains.
We start by recapitulating this first definition.

Definition 4.1. Let A be the observable algebra for a fixed quantum system. A is
a C"-algebra with identity 1 4. If this algebra is finite-dimensional then it is going
to be the algebra of complex d X d matrices M.

For each n € Z consider an isomorphic copy Ay, of A and define Ay = &) Ay, for
TEA

every finite subset A € Z where the tensor product refers to the minimal C*-tensor
product (cf. [Tak02]).

Now one can obtain the chain algebra A; as a C*-inductive limit of the algebras
A, with A" C A finite and the homomorphisms A, < A, are given by tensoring
A€ Ay with @,cpp 1 Ag,y- 2 has a trivial action on Ay given by translation.
The translation invariant states on the chain algebra are denoted by 7 (A).
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The following construction is the original definition of FCS in [FNW92].

Proposition 4.2. Let A be a C*-algebra with unit, and let w € T (A) be a transla-
tion invariant state on the chain algebra Ay. Then the following are equivalent:

i) The set of functionals ® : Ay — C of the form

DA ®ay) =w(X @A @A), (4.1)

with X € Az generates a finite-dimensional linear subspace in the dual of

Ay.

i1) There ezists a finite-dimensional vector space B, a linear map E: A € A +—
E, € L(B,B), an element e € B, and a linear functional p € B', such that
poE, =p, Ei(e) =e, and forn € Z,m € N and A; € Ay = A:

WA, ® - @ Ayp) = ple) poEy o---0By (). (4.2)

If in ii) B is chosen as minimal in the sense that

span{EAlo---oEAn(e) ! nEN,Al,...,AneA} =B,

and

span{poEy, 0---oE, (¢) | n €N, Ay,..., A, € A} = B,

then B, E, p and e are determined by w up to a linear isomorphism.

Definition 4.3. If the equivalent conditions of proposition 4.2 are satisfied, w will
be called the finitely correlated state generated by (E,p,e).

This original definition of FCS can also be put into the formalism we have encoun-
tered in the construction of continuous dilation spaces. Defining A; = B(K;) as the
“chain” of environments, one can easily see the connection to the definition above.
Note the finite dimension of B.
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Definition 4.4. Let H be a Hilbert space and p € T(H) be a state on B(H), i.e.
positive and of trace one. Also let K; be a separable Hilbert space for all1 < i <n
and let E; : B(K; @ H) — B(H) be a channel, i.e. completely positive, unital and
normal.

A finitely correlated state w belonging to the tuple (Ei_,, p) is given by:

w: él’)’(l@) — C, X —tr (p (ﬁ Ez) (X ® ILH)> : (4.3)

=1

That this is an equivalent definition follows from simple tensor product identities
and from the fact that B(K) constitutes a C*-algebra. Furthermore, if there exists
a family of isometries V; : H — K; @ H for 1 <i <n s.t.

E;,: BIK;®H) — B(H), X — VXV, (4.4)

the FCS is called purely generated and if the IC;, = KK V i, s.t. E, = E then it is
called translation invariant.

The C*-algebra B was assumed to be finite-dimensional which makes (in our for-
malism) /C; finite-dimensional, too.

Since we assumed that IC = IC; right from the start by assumption number two and
our analysis relies on the Stinespring theorem, we will see that the FCS (and later
cMPS) arising from the continuous measurement setting are automatically purely
generated and translation invariant.

4.2 Continuous Matrix Product States (cMPS)

cMPS were first defined in 2010 (cf. [VC10]) as one-dimensional quantum fields and a
“continuous analogue” of MPS/FCS. This analogy was, however, more heuristically,
then rigorous. The cMPS quantum field is defined as

L

%) =ty | P exp / dr[Q @1+ R ed(@)] || 10) 15

0
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— Z / day ... dz, ¢, 0 () .. 0 (x,) Q) (4.6)

0 0<zy <<z, <L

where

On = traux [UQ(xla 0) RU’Q(x% m1) R--- RUQ(La xn)] )

y
ug(y, ) = Pexp /Q(w)dx

and the traces are taken w.r.t. a finite-dimensional auxiliary Hilbert space. The
matrix valued functions ) and R act on this auxiliary space, P exp denotes the path
ordered exponential and v are field operators obeying the canonical commutation
relations with the unique vacuum state |Q2) defined via 1 [€2) = 0.

To see how this definition is comparable to the cMPS defined at the end of this
thesis is going to be an interesting outlook, especially if one analyzes Fermions and
has to impose Pauli’s exclusion principle somewhere.

Correspondence to cMPS using Continuous Measurements

Searching for a rigorous limit of MPS/FCS seems easier, when they are defined in

the form
i=1

since one could take an interval decomposition © € 3([0,7]) and analyze the con-

vergence properties of the net © — H E,.
i€1(©)

Defining a cMPS to be the refinement limit w.r.t. those interval decompositions and
those “infinitely fine” concatenations seems to be a very natural idea and ultimately
easier then coping with path ordered quantum fields. Construction of a “continuous
measurement” field, arising from a “limit channel” and showing its well definedness
is going to be subject of the following chapters.
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Chapter 5

Continuous Weyl and Field
Operators

We have seen how we approximate operators on each of the discrete spaces Kg in
chapter 3. We have also seen how to break down the convergence conditions for dif-
ferent topologies involving the limit space into terms only analyzing discrete object
with each other in chapter 2. We will combine both notions to obtain necessary
criteria for operators on Ky 71 to be well defined.

5.1 Limit Space Operators

Since we perform a refinement limit of our Hilbert spaces Kg Jzq K= we need to
analyze how we come from B(Kg) to B(Kz). In chapter 2 we say that our limit
constructions is mostly based on norm differences of the following form

=0,

op

I H — T Wals
E1>§(19 W@ J_GW_J_@

like here for norm convergence of operator nets. The embeddings Jzg are con-
structed as a special kind of “averaging operation” on the operator level. To see
this we will proof the following theorem.

Theorem 5.1. Let © C Z € 3([0,7]). We set |\;),|v;) € K,0 # ¢; € C and
O; € B(K) for every j € I(Z2). Then the operators
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wo=| ﬁﬁfg'” e BC&K) (5.1)

VT [A) O+ =l

are of the following form after embedding

where

Cj

_ 1 VEmE (4)
JL o)\ o (1) o 2) o (2 (2

. (5.3)
)

Here we have used the short notation

m; = 2 X, )

(x) =3 2x, (5.4)
JEIEL)

for averaging over the subinterval Z|;.

Proof. For the sake of presentation, the proof is shifted to Appendix A.2. ]

The lower right matrix element of W; had this special form such that the embedded
operator can be written completely in terms of averaging operations. The special
7 dependence in this theorem will become clear in the following discussion.

Whenever an operator is going to be embedded, we will refer to this theorem, even
though the starting operator is not exactly of the form in equation (5.1). The proof
works analogously for any other form of W;.

We now want to analyze which orders of 7 are necessary to get a well defined
operator in the inductive limit and which does not become trivial. At first we check
which orders of 7 in each matrix element would lead the operator to converge to
the identity and hence can be ignored.
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Theorem 5.2. Let k > 0 a positive real number, |\),|N\y) : [0,T] — K, c :
0, 7] — C and U : [0,T] — B(K) bounded functions, i.c. there erists a C, € R

s.t. sup [|A(t)|| < Cy, and analogously for c(t) and U(t).
t€[0,T) '

Then the following net of operators converges in weak-* topology to the identity

- et T ()]
Wg' = € B(Ke). (5.5)
zei%) Ti |/\2(tz)> 1+ T; U(tz) °

Proof. Let us recall that since our net maps into a reflexive Banach space, the weak
and weak-* topologies coincide.

—_~—

Now Wg € B(Kg) is weak convergent, and therefore by theorem 2.20 weak conver-
gent, iff |pg) , [thg) being Cauchy implies that (pg|Wge) is Cauchy (and therefore
convergent). Now since the linear span of exponential vectors is dense in Kg (see

theorem 3.10) it is sufficient to check weak convergence on this subset. We also
restrict the domain of the exponential vectors to step functions.

So weak convergence of Wg to the identity is equivalent to showing
liy  (eo(v)| (W&~ 1) colu)) =0 ¥ v}, ) € Po (L*(0.7],K))
©€ 3([0,1))

We calculate

(eov)| W0 ()

_ H< 1 T Rl P () AN >
iciio) \ \VT (7 2*%@2» 1+77U() | \vm )

— H < 1 I+ Til—‘mc(ti) + Tilﬂ (A1 (t)]75) >
. VR I\2T De ) + ) + U )

= H L+ 73 (i) + 7 [e(t) + a () [m) + (il () + @lU (6)E)]
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And since 7 is the relevant order in this limit, as we have seen in equation (3.19),
we have that

lim (o) Woeo(w) = lim  (eo(v)leo(i) -
e 3([0,7]) ©€ 3([0,17)

Using the denseness of step functions we can lift this to proof to L? functions as
outlined in figure 2.2. Hence Wg converges weak-* to the identity. ]

One can see that the one in the C-valued part is a necessary condition for this limit
to be well defined. It is also noteworthy that changing the exponent from x to —k
the resulting net in C wouldn’t be convergent at all. Let us summarize this in a
theorem.

Theorem 5.3. The only possible form of an operator Wg € B(Kg) which converges
in weak-* topology to a well defined object and does not contain trivial terms is given

by

Wo = X e VR € B(Ko). (5.6)

ier©) \VTi &) 1+U;
With functions c € L'([0,T],K), |\),|€) € L*([0,T],K) and U € L'(]0,T],K).

Proof. In analogy to the prior proof we calculate

lim  (ee(v)|Weee (1))
©¢€ 3([0,17)

= lim  J] 47 (@) e+ m) + @8 + (@ Um)]
©e3([0,T]) ic1(®)

T

(318) exp /<7z’ﬁ¢> +T+ (N[T) + (Ti6) + (Tl U ) dt |
0

which is a non vanishing and non trivial expression in the limit. In the last equation
we viewed ¢, |\), |£) and U as step functions via their averaged analogues ¢; and so
on. The proof lifts to L” functions, as outlined before.
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Hence we see that only those 7-orders contribute, especially the constant terms
which make Wg the identity to zeroth-order in 7. O]

Having this corollary we know the relevant order of 7 in each matrix element of our
operators. We will use this to write down field operators up to leading orders in 7,
which will contribute in the inductive limit.

5.2 Constructing Weyl and Field Operators

We've already studied the importance of Weyl operators and their representation.
Applying the worked out formalism of continuous measurements on Weyl operators
seems to be a fruitful idea. We first define discrete Weyl operators on each time
interval, starting with unitary rotations of the dilation spaces with respect to each
other.

Definition 5.4. Let U : [0,T] — B(K) be a unitary operator valued function. For
a given © € 3(]0,T) we set:

1 0
Us € B(Ko) Us == X) (5.8)
i€1(O) 0 Ui

Before we add more to freedom to those operators we need to show their well-
definedness in the inductive limit.

Theorem 5.5. Let Ug € B(Kg) be as above . Then, for every © € 3([0,T]), the net
O — J@U@Jg eB (IC[QT]) converges in the strong topology to a unitary operator,
i.e. for any convergent net © — |pg) € Kg and for all® C = C A € 3([0,7]) we
have that

/{iHL |UrJrepe — JazUzJ=zeve|| = 0. (5.9)
>=

Proof. Since U(t) is unitary, every Ug is unitary and hence bounded. As seen in
corollary 2.18, proving strong convergence reduces to showing that the following

norm difference vanishes in the I{iHL -limit for all © € 3([0,7) and |pg) € Kg:
>=
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||UAJA980® - JAEUEJE(9909H2 = ||UAJA®<,0®||2 + ||JAEUEJE@SO®H2
—2Re (UpJrovolJazUzJz0v0)

= QHS%HQ —2Re <JAEJ5690@‘U/T\JAEUEJE®SD@>

= 2”909”2 —2Re <JE@90®‘ <J/T\EU/J{JAEUE> J5980@> .

Here we have used, that the Jzg and the Ug are isometries for all ©,= € 3([0, TY).
So the theorem is equivalent to the weak-* convergence of the map JXEUIJ r=Uz to
the identity. Exploiting the explicit form of J TEU); Jpz using lemma 5.1 and perform
the matrix multiplication with Uz we have

NeUiielz= @ | > ZUly,
€IE) N\ jeral) "

We are now restricting our unitary valued function U € L'([0,7],B(K)) to the
dense subspace of step functions w.r.t. the coarsest interval decomposition of our
analysis, i.e.

Ut)= > Ult:) Xpt_yny Z Ui x; € P=(L'([0,T], B(K))).
)

icI(E i€l(2

Since Z is coarser than A it holds that for any i € I(Z) we have U; = U, Vj €
I(A|;) and therefore, calculating the action of J TEU/T\J r=Uz on an arbitrary element
=) == ® (la;) o))" € K= with |g;) € C and |o;) € K we have:

icl(2)

jai) \| [ ’ @)
<§OE‘JZEUIJAEUE¢E>: H < 0 D Lty
icI(Z) . LA

)
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=TT [talay+ > 2 {a|vivia)
iel(2) JEIA) *
= H (arlar) + {aular)] = (p=le=) -

i€I(E)

This proves the weak-* convergence to the identity of J/T\EU/T\J r=Uz and therefore
the theorem for U(t) being a step function. Via denseness, as discussed earlier in
figure 2.2, this statement is also true for unitary valued U € L'([0,T], B(K)). O

Having this we can construct Weyl operators upon quantum fields. We start with
a time independent construction and then add time dependence via L*-functions,
corresponding to our gauge freedom.

Definition 5.6. Let |\) € K. We define the following discrete field operator

0 VT (Al
O(JTIN) EBCBK), O(H/T|N):= . 5.10
(VTIN) € B{Co K) (VTIA) _AN 0 (5.10)

If we now add some time dependence, let |\) € L*([0,T),K) and © € 3([0,T]). For
i € 1(©) we write, as usual, |)\z> for the integral of |\(t)) over the [t;_1,t;) interval
and 7; = t; — t;_y fort; € [0, T]. We define the discrete Weyl operator to be

We(IN) = ) exp (® (v7i [N))) - (5.11)

i€1(0)

If we write |X,> = HX,H le;) with |e;) of unit length and 0, = \/FZHXZH, one can
explicitly calculate the operator exponential in multiple ways as

(R o
We(lA) = L+@(V1i|N)) — = o
&® P20

_ cos(;) sin(0; (e;|) (5.13)

i€I(©) \ sin(6; |e;)) cos(0; |e;)e;])

+ O (5.12)
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cos(6;) sin(6;) (e;]
iere) \—sin(f;) le;) Ly + (cos(6;) — 1) [e;) el

o =3 vE (A (5.15)

(5.14)

where, here and from now on, “t.r.0.” means “to relevant order in 77. We used
the sine and cosine functions which are IC, or even B(K), valued. Even though it
should be implicitly clear what we mean by this, let us define those objects in the
cosine case rigorously once. Potential misconceptions about the relation between
the equations (5.13) and (5.14) should then be cleared.

Notation 5.7. Let 6 € R and |e) € K. We define

cos(9|e>>:Z(—1)"(9|€>)n, COS(9|6>(6|):Z(—1)"M, (5.16)

— (2n)! — (2n)!
where we set
2n+1 0
€)™ = (ele) - (ele) e) le)” =1,
—_———
n-times
|e><e|2n+1 = le) (ele) - - - {e|e) {e], |e)<e|0 = 1.
——
2n-times

Keeping the parenthesis in mind and carefully rewriting the series above, one easily
obtains that

sin(6;) (e;| = sin(6; (e;), sin(6;) |e;) = sin(0; [e;))
cos(0; |e;)ei|) = L + (cos(6;) — 1) [e;)ei] -

Those equations will be used quite often, so one has to accurately take account of
the parentheses. Now having a net of (bounded) operators, we need to show its
convergence properties. We show that this net converges strongly to a well defined
object.
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Theorem 5.8. Let [\) € L*([0,T],K) and We(|)\)) as in equation (5.11), then the

net © — J@W@(|/\>)Jg converges to a unitary operator in the strong topology, i.e.
for any convergent net © — |pg) € Kg and for all ® C = C A € 3([0,T]) we
have that

IWa(IA)Jae lpe) — Ja=W=(IA)) Jze l@e) | = 0. (5.17)

lim
ASE
Proof. The proof is shifted to appendix A.3. O

Having shown convergence we are now able to define the limit operators in the
following form.

Definition 5.9. Let U € L'([0,T],B(K)) be an unitary operator valued function
continuous in the strong topology and let |\) € L*([0,T],K). We define the con-
tinuous Weyl operators to be:

W(IN) € B (K W(A) == lim  We(|A) (5.18)
©¢€ 3([0,17)
W(|A),U) € B (Kpg) WX, U):=W(A) lm U (519)
Oe 3([0,17)

We have to justify the name of these operators and show that they obey the Weyl
CCR, as analyzed before. The Weyl CCR can be seen as a projective and unitary
representation of a symplectic space. In our case we have the Hilbert space Ky 1
which induces a symplectic form, using its complex structure, via the imaginary
part.

The Weyl operators defined above, however, inherit a unitary “intertwiner” which
makes the representation a bit more complicated. Let us analyze this more careful
using the notion of semi direct products.

Proposition 5.10. The Hilbert space Ky 1 canonically induces the two groups

Gy = (L ([0,7),Kom) . +),  Gy= (L' ([0,T],U (Kj1)) .°) (5.20)

with U (IC[07T]) denoting the unitary operators on Ky ) equipped with concatenation.
The homomorphism 6 given by
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0: Gy — Aul(Gy),  O(U)(|n) = Ulp). (5.21)

defines a semi direct product w.r.t. 0, denoted by (G, Xy Gy, @) as a subset of the
Cartesian product G| X Gy via

[ (Gl X GQ) X (Gl Xo Gg) — (Gl X GQ)

(A, Ur) @ (l) , Uz) == (1A) + 0(U1)(|m)), Uy 0 Uz) = (IX) + Uy |p) , UrUp). - (5.22)

A unitary projective representation of (G Xg Gy, ®) on Ky would then be given
by a homomorphism W : (G Xy Gy, ) —> (U (/C[O,T}) ,o) satisfying

WA, Ur) o W(lw), Us) = c((IA) . Uh), (|}, U2)) W((IA), Ur) o (), Up)),  (5.23)
with ¢ € C being of unit length.

It should be obvious, that the outlined maps truly are homomorphisms and that
the construction is therefore well defined. We will omit the notational overload
coming from all those different group structures and simply refer to this group
representation above that W is intertwined by a unitary action. That the Weyl
operators we encountered are of this form is the statement of the following theorem.

Theorem 5.11. The operator W(|\),U) defined as above with |\) € L*([0,T], K)
Julfills the Weyl commutation relations on the representation space Ky with a
unitary intertwiner.

That is for |\),|u) € L*([0,T],K) and U,,U, € L' ([0,T],U (Kjor1)) unitary op-
erator valued functions, continuous in the strong topology, we have that W is a
infinite-dimensional, projective and unitary representation of the Weyl CCR with

WA UDW (), Uy) = e TR0 () 1 U, ) U 0,). (5.24)

Proof. Note that equation (5.24) is a projective representation like in equation
(5.23) with symplectic form o = —27 Im((\|u)). Since all operators involved are
bounded, they commute with the strong limits.

We split the proof in various steps.
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Step 1.

We start be proving the statement with U, = U, = 1, i.e.

limy  Wo(IADWe(li)Wa(—(1A) + ) € 7= 1.
©¢€ 3([0,17)

An explicit calculation to relevant order in 7 of Wg(|A))We (|u))We(—(|A) + |1)))
can be found in appendix A.4. One sees that

Wo (M) We(li))We(—(IN) + 1) =" &) 1—inlm0(<&-m>) i
i€I(©)

We need to analyze to which operator W this concatenated Weyl operator converges
to. As seen before we need to analyze how this operator interacts with the embed-
dings Jzg as seen in theorem 5.1 and use the limit obtained in equation (3.18) for
the resulting factor, i.e.

lim T W=(IA)Wa(|m)Wa(—(1A) + 1)) Jze
e 3([0,17)

= lm @@ JI C—inm(N[E))) Leex
0€3([0,T]) ic1(®) jeI(Z|;)
T

=exp| — /ilm (<X|ﬁ>) = exp(—iTIm (<X‘ﬁ>))

0

Hence, by multiplying with exp (z T Im (<X‘ﬁ>)), we get the desired formula above.
Step 2.
We fix one unitary valued function U and show

W(0,UNW (M)W (0,U) = W (U |A)).

First observe that terms like Wg(0) = exp(0) = 1 are neglected. One can calculate
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WO,UNW (AW (O,U) = lim U Wel(lA) Us

©c 3([0,17)
1 0 — 1 0
= i exp (@ (V7 (X))
@e?;‘(l%;,T])ieie(g) 0 U;) 0 Ui
) cos(6;) sin(6;) (e;| Ui
- iy

e 3([0,7]) icr(@) \ — sin(6;) U; le:) Uz'T cos(0; [e; Xe;|)U;

= dim @ e (@ (VAUTR))) = WO ),

0€ 3([0,T)) ier(®)

where we used the short notation 0, = |/7; | Al

Step 3.

There is one observation left to be done and this is rather trivial. One can see easily
that

W (0, U)W (0,Uy) = W(0,U,Us).

Step 4.

Combining everything we can calculate

WA, UDW (), Us) = W (AW (0, U)W ()W (0, Uy)
S ()W (0, U)W ()W (0, U)W (0, U)W (0, U)
Step:2./3. W(|>\>)W(U1 |;L>)W(O, UlUQ)
Step:O./l. 64T1m(<>\|U1u>) W(|)\> + U, |M>)W(Oa U1U2)

Db =TI N 7 (1N) + U, ), Uy Us).

So the theorem is proven. O
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Chapter 6

Point Processes and Counting
Statistics

When we consider a POVM A, describing a measurement in the i-th time-step and
ignoring all other time-steps, then it would certainly have the form (A;(z)@i) and
x+— Ai(z) is a POVM in B(C® K), where we have used the notation in equations
(3.24) and (3.25). Summing over all subintervals would then capture the whole
observable algebra B(Kg).

This would correspond to an operator second quantization and it seems to be a
natural way to model measurements in modern laboratories. Outcomes of those
measurements are then going to be describes by so-called point processes. Let us
elaborate this idea a bit further.

6.1 Field Operators and Second Quantization

One stumbles upon second quantization mainly in the sake of many-particle quan-
tum mechanics to define a “many-particle” Hilbert space, the Fock space, out of a
given one-particle Hilbert space. Second quantization, in this thesis however, deals
with operators on tensor product spaces, w.r.t. a certain interval decomposition.

Since the basic mathematical idea, i.e. lifting an element from one space to an
object on (every possible) tensor product of this space with itself, we chose to name
both notions identically.

Definition 6.1. Let © € 3([0,7]). We define second quantized operators via the
bosonic/fermionic functors I'g,Tg_ : B(C ® K) — B(Kg), defined as follows.

Having an operator valued function A :[0,T] — B(C @ K) we set
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where we have used the “@i” notations from equation (3.24) and (3.25) respectively.

Note that the operators could be independent of the time-step, i.e. A(t;) = A for
all i € 1(©). It therefore makes sense for I'g,'g_ to act on constant operators as
well. It should always be clear from context what we mean in the particular case.

We will restrict our analysis to bosonic fields, as outlined before. An important
feature of the bosonic functor, that we will use in some proofs, is explained in the
following corollary.

Corollary 6.2. Let A, B be operator functions in B(C & K) like above. It holds
that the bosonic field operators a compatible with the commutator, 1.e.

[Fe(A),Te(B)] =Te ([4, B]) . (6.2)

The functor I'g s therefore a Lie algebra homomorphism between the Lie algebras

(B(C ©® IC), ['7 ]) and (B(KG)’ ['? ])

Proof. Additivity and C-linearity is trivial. Inserting the definitions and using that
the tensor product of linear maps acts factor-wise one easily calculates the only non
vanishing terms in the bosonic part are the factors in which A and B act together.

This is because every term with an A acting at the i-th and a B acting at the
j-th site always cancels with a corresponding term with the opposite sign. The AB
terms do not cancel, since they are subtracted with corresponding BA terms, which
proofs the corollary. n

Since the inductive limit space Ky 77 is isomorphic to the (for us bosonic) Fock space,
one would be interested in building “true” Fock space functors. In the measurement
setup this would correspond to an embedding from C & K into Ky 7, defined on
the discrete subspaces. This motivates the following approach.

Definition 6.3. Let © € 3([0,7]). The bosonic Fock space functor I' is in the
context of continuous measurement given by the natural embedding w.r.t. the given
interval decomposition, 1i.e.

I: B(C ©® ]C) — B (’C[QT}) y
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Ar—T(A) = lim Jole(A)J5 (6.3)
©€ 3([0,17)

It seems to be a natural idea to see what the second quantized Fock space ana-
logues of the discrete field operators look like. Indeed, having a Fock space functor
simplifies a lot of tasks regarding Weyl operators as we shall see.

Definition 6.4. Given a function |\) € L*([0,T],K) and © € 3([0,T]). Recall the
definition of the discrete field operators in equation (5.10). We define the second
quantized discrete (bosonic) field operator to be

dg : L*([0,T),K) — B(Kog)

[A) — Po(|N) =Te (@ (v7i [X))) - (6.4)

Since we defined those field operators on a discrete Hilbert space, i.e. on Kg, it is a
priori not clear that the CCR is truly fulfilled and that ®g therefore deserves this
name. This observation is the statement of the following theorem.

Theorem 6.5. The field operators obey the CCR in the inductive limit, i.e. for
), ) € Z3(0,T], K) we have

lim  [Pe(|A), Pe(lm))] = —i0ani(IA) , [12) L (6.5)
oe 3([0,17)

with a nondegenerate bilinear anti-symmetric form og,(z,y) = 27 Im ((z]y)).

Proof. We start by explicitly calculating the commutator in a discrete setting.

[@o(|A), Bo ([1))] = Po(IN) Pollu)) — Po(ln)) Pe(|A)
=To (® (v7i M) Te (@ (v 1)) — To (® (v [1:)) To (P (v [N)))
e (® (v M) @ (VA 1) — @ (VA 1) @ (V7 M)

o ([0 @y o @) o (&

:F@ T; — 7 —
—|x)y 0 ) \=1m) o —m) 0 ) \=x)
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T —Nilm)y 0 = mN) 0
— 10 T; — —
0~ 0 —[E)XA
T —2i Im({\|7;)) 0
=le |7 —
0 —2i Im |\ X7, |

=Te (_Qi Im(<xi‘ﬁi>)7_i ]ltcaalc) = —i0mi(|A) |N>)]1/C@

The imaginary part, and therefore the complex conjugation in one of the last equa-
tions, is meant to be taken point-wise on the B(K)-valued part. We also used the
identity I'e (7; 1cgx) = T 1x,, which should be trivial to see, given the definition
Of F@. ]

6.2 Counting Statistics in Stochastic Calculus

The main purpose of this work is to connect one-dimensional quantum fields and
their counting statistics, to the subject of continuous measurements. Therefore
we need to recapitulate some basic knowledge in stochastic calculus, the reader,
however, should be familiar with o-algebras and measures. The notation is based
on [KRW13].

Notation 6.6. Let i1 be an operator or scalar valued measure. We abbreviate the
integral over scalar functions f as

ulf)i= [ n(@osta). (6.6)

Respectively for POVMs { F, | x € X} one defines F[f] ==Y . f(x)F, in the case
that X is discrete and F(f] = [, f(x)F(dz) if X is continuous.

We now concentrate on so-called point processes which are special probability
measures. Those are given by certain random measures with possible outcomes
(x(1),x(2),...) over a set X. Every point process that can be represented by a
weighted sum' of Dirac measures, i.e.

1 . . . .
The Dirac measure therefore counts the number of occurrences of a given outcome including
its multiplicities.
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§=2_ 0y (6.7)

where z(i) € X and n is a random number, is called a proper point process.
As outlined in [LP17][Chapter 2.4.] one knows that every point process is proper,
as long as its state space X is at least a Borel subspace of a complete separable
metric space. We will always assume this to be the case.

Every Dirac peak can then be interpreted as a click-event. Since most quantum
experiments (especially including photons) are more of a beam-like character and
one doesn’t measure one-particle observables, but rather a series of click events over
time and/or space, one does not obtain a single probability distribution as output
but something more like a distribution of outcomes.

Hence point processes seem like a natural description of physical processes in modern
laboratories. Since the viewpoint of point processes being “some random points in
some output space” is too vague, we introduce them more formally:

Definition 6.7. Let X be at least a complete separable metric space with Borel
o-algebra X.

o A boundedly-finite measure on (X,X) is a measure v s.t. v(E) < oo for
all bounded E € X.

e A counting measure is a boundedly finite measure with v(E) € Ny VE € X.
We denote the set of counting measures by CM(X,X).

e A random measure over (X, X) is a measurable mapping from a probability
space (§2, X, ) into the boundedly-finite measures on (X, X).

o A point process is then just a counting measure valued random measure, i.e.
a measurable map

(X, ) — CM(X, %), ie EwE)eNVweQ EeX (6.8

So a point process is a special case of a stochastic process. As usual for point
processes (cf. [MS06][p. 267 et seqq.]), we will omit the argument coming from the
probability space and view point processes synonymously via their image, i.e. a
counting measure.

Before we define counting statistics we need two objects, which we will be helpful
in the upcoming analysis. First we want to define some probability measures on a
small domain and “lift” the definition to a bigger domain.
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Definition 6.8. Let (X,%;), (X5,%,) be measurable spaces and T : X; — X,
a measurable map. Then, given a measure p : ¥y — [0,00], one can define the
pushforward measure on (X5, %) w.r.t. T as

To(p): B — [0,00],  (Tu(w)) (B) = p(T1(B)). (6.9)

Another tool we need is to define a measure via its kernel.

Definition 6.9. Let (X,%;), (Xy, Xy) again be measurable spaces. A function

KX X Xy — [0,00] (6.10)
is called a (transition) kernel from X, to X, iff:

i) The map x, — k(x1,Sy) is measurable on (X1,%,) for every fixzed Sy € ¥s.

it) The map Sy — K(x1,55) is a measure on (Xy,3,) for every fized x, € X .

If k maps into [0,1] and the corresponding measures are all probability measures,
then k is called a Markov kernel.

This definition shows us that a point process like in equation (6.8) can be defined
equivalently as a transition kernel from €2 to X. We now have everything we need
to talk about characteristic functions and their physical interpretation.

Instead of calculating probability measures, it is sometimes way more practical to
look at its characteristic function which is given by its Fourier transform, i.e.
the expectation value of the function & — exp(i&[f]), hence

O(f) = <e"f[f]>. (6.11)

Depending on the expectation value, we require f to be integrable, continuous,...
s.t. the expression above is well defined.

Probability measures and characteristic functions stand in bijection to each other;
thereby no information about the underlying stochastic process will be lost.

If a certain property of the point process is fulfilled, namely complete random-
ness, then one obtains a Poisson process
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Poi: (Q, %, n) — CM(X, %), {ny,...,n,} — Poi, :=Poi({n,...,ng}, ),

which is defined via the intensity measure p on (X, X), s.t.

k

Poi,({Xy,..., X)) =[]

=1

M(Xl)nl
nl!

exp(—p(X;)). (6.12)

The complete randomness condition ensures that the particle statistics in every
bounded subset of X; C X are independent from each other, which seems to model
particle beams accurately. Having this measure one can calculate its characteristic
function straightforward to

otn) = e [ utaa(e ~1)). (6.13)

The k™ moment of the point process £ is the unique permutation symmetric
measure my, on X" that satisfies

/mk(dxl, . ,dxk)ﬁf(xj) - <§[f]’“>. (6.14)

j=

For arbitrary functions f one can simply write (see [KRW13])

my|f] = <Z f(f(i1)>---7fﬂ(ik))>~ (6.15)

The moments are physically very important, since the first and second moment
correspond to the mean value and variance of the underlying point process. With
the characteristic function, however, one is able to extract every possible (existing)
moment, since one has

f(x).

1

J

C(h =Y 5 [ muldar-dny
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That means that one can extract the k-th moment from C(Af) by differentiating
k times w.r.t. a generic A € R and evaluated at A = 0. Since in some probability
moments singularities tend to pop up, it is sometimes more convenient to define
more regular objects, so-called “factorial moments”, in the following way:

my|f] = < >, f(f(i1)>---7iv(ik))>~

Z1 SN Vi
distinct

Their generating function

f(z;), (6.16)

k
=1

ClH =Y [ Al -dsy)

J

~

is therefore related to the original characteristic function via C(f) = C(e" — 1).

The reason one takes counting statistics into account is that it makes the construc-
tion of second quantized observables on Fock space fairly easy [Wer89]. The idea is
to take an observable F', given as a POVM, acting on a one-particle Hilbert space
‘H and lift it to a second quantized observable I'F' by measuring F' on all particles
that arrive, restricted to the N-particle space. We will use this idea later on, talking
about “measurements on arrival”. Formalizing this idea we get

(e [) = [Flany oo rn) & = (F[]) 7.

To know how this operator acts on full Fock space one needs to take the direct sum
over all N € N, i.e. one obtains

(TF) [eiﬁ[ﬂ] —T <F [eifD . (6.17)

Hence, given a state p, one can extract the full counting statistics w.r.t. the second
quantized POVM T'F' from the characteristic function

C(f) = tr(p (TF) [eiﬂﬂD (.17 tr(pF (F [dD) (6.18)
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Using equation (6.16) with the correspondence between C(f) and C (f) combined
with equation (6.17) we see

a(f):tr(pf(]l—FF Ztr(pN (1+ F[f > Ztr<p Fl ®k)

N=0

with the reduced k-particle density operator

.~ (N
=3 () oo 619

We will now use this correspondence between second quantized POVMs and their
characteristic functions, by explicitly constructing a POVM of desire. We already
defined the Fock space functor corresponding to continuous measurements in equa-
tion (6.3).

6.3 Measurement on Arrival POV Ms

We have already seen how to second quantize observables in equation (6.17). How-
ever, if we want to analyze counting statistics, we need an extra notion of arrival
times. These construction is going to be the task of the next definitions and theo-
rems. Since we are not interested in the total number of events, but rather in their
distribution in time, we need to modify our measure structure in the following way,
starting with an abbreviation:

Definition 6.10. Let © € 3([0,7]) and U; € B(K) for all i € I1(©) be a family of
operators. In abuse of notation we define:

0 0
A, e BICK) A =
0 U,
I'e(U;) € B(Ko) Lo(U;) :==Te(4;). (6.20)

13

If we want to describe a measurement on arrival, we need to define “what to mea-
sure” if no particles arrive in a certain time-step. Therefore we need to get a more
advanced notion of a POVM by increasing its domain.
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Definition 6.11. Let X be the non void set® of “events” with Borel o-algebra X.
We define that the label “0” corresponds to “no-event” and therefore demand 0 ¢ X .
Furthermore let © € 3([0,T]) and for alli € I(©) let F; : X — B(K) be a POVM.
A set £ C {0} UX is defined to be measurable iff € N X is measurable in X.

We denote the (canonical) o-algebra of the set {0} U X =: X° by X° and define a
new POVM M, : X° — B(C @ K) via

M,({0}) = (1)8 . M(X) = 8 for X €X. (6.21)

The measure of a subset of {0} UX is then the sum of its measures in {0} and {X}
and this makes M; clearly to a POVM, describing measurements on arrival.

This POVM models the situation where in the time interval [t;_;,t;) no particle
arrives, described by M;({0}), or a particle arrives and we measure according the
POVM F'. The term “measurement on arrival” should become clear in this context.

6.4 Constructing Point Processes

Having this POVM we can construct a probability measure for our measurement
on arrival and build a true point process upon it.

Definition 6.12. In the situation from above we equip the Cartesian product state
space w.r.t. the interval decomposition O, i.e.

Xo:= ] {0}ux, (6.22)
1€1(O)

with, its product Borel o-algebra Xy and define a probability measure v, for a given

state p € T(K) and & € X° fori € 1(©) as

v, Xy — [0, 1], I &—tr | Jonte & Mi(&) |- (6.23)
1€I(©) i€1(0)

21\/_[athematically we require X to be a complete separable metric space.
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Since it is not obvious, we need to check well-definedness.

Corollary 6.13. The triple (X(%, X2, I/p) constitutes a well defined probability space.

Proof. To see that (X, X3) is a measurable space is trivial, since Xg is just a
product of measurable spaces and inherits its measure structure from {0} U X, just
like its o-algebra X3. v, is indeed a probability measure, because it takes values in
[0, 1] and since M; is a POVM we easily calculate

v,(0) =tr [ JopJo Q) M;(0) | =tr| JhpJo () 0| =0
i€l(©) i€I(©)

and
v, (X8) = v, H {0 uX | =tr | JhpJe ® M; ({0} U X)
icI(®) icI(®)

= tr | JopJe Q) M, ({0}) + M; (X)
1€1(0)

=t [ Jhodo R) Le® 1k :tr(Jng@> ~ 1.
ie1(O)

The o-additivity of v, reduces mostly to the weak-" o-additivity of the POVM.
Indeed, having two disjoint sets of the form & = {0,...,x;,...,0} with z; and =,
not at the same position, one easily sees that the trace splits into a sum. If x; and
x5 are located on the same position, we need x; N zy = () in order to get disjoint
sets & and &. Hence we have

V(6§ U&,) = tr(l)ﬂ]@ (M) @ @ Mi({z1 Uzs}) @+ @ Mz<®)])
= tr(Jopdo [My(0) @ -+ @ My({n}) + My({ws}) @ - @ Mi(0)])
= Vp(£1> + Vp(€2)'

Since the sets &; clearly generate X9, it is sufficient to show the o-additivity on this
subset. So v, is a probability measure. m



76 CHAPTER 6. POINT PROCESSES AND COUNTING STATISTICS

We now have a probability space, but in order to define a point process we need a
counting measure and insert a time-dependence into our formalism. We will define
this point process step by step, starting with the kernel of its counting measure.

Lemma 6.14. Let Xy 1) be the product o-algebra of [0,T] x X. The following map
defines a transition kernel k, counting the events falling in a given subset and which
implies a counting measure on [0,T] X X:

KXo X X071 — No, (@)icro), &) ¥ 8{(tiir, 2;) | (ti1, @) € &} (6.24)

If X° 3 2; =0, i.e. no event happened in the i-th subinterval, we see that (t,_1,z;) ¢
§ for all § € Xoqy, since 0 ¢ X.

Here we chose to tag the event x; at the left boundary of its corresponding time
interval [¢;_1,t;). We could have chosen any other point in this interval equivalently.
So this definition can be physically motivated, we need to check, however, that it
is well defined.

Proof. We proof that the map x defines a transition kernel between the measurable
spaces (Xg,.’f%) and ([0,7] X X, Xo.7))-

i) For every fixed set { € X[y 1 we have that the map

k(- €): (X&:{%) — (No, P(Ng)),  (2)iere) = ${(ti1, z) | (o, ;) € &}

is measurable, since every possible preimage of a (£/(0))-tuple of natural numbers
(particle “clicks” per subinterval) can be easily constructed and is naturally an
element of X9.

ii) Vice versa: Fixing an element (z;);c7o) € X¢ implies a map

K ((2:)iere) ) X — No, P(Ng)), & — 8 {(tim, ) | (L, 23) € €}

We now have to show that this map is a counting measure and do this straightfor-
ward by checking the defining properties: & ((xl),e 1(©)> ) is trivially non negative
and it is also easy to see that & ((z;)ic(), @) = 0, both independently of (z;)ics(e)-

The only nontrivial part is the o-additivity of mutually disjoint sets. Since Xy 1y is
of form {(, {([0,T7], X)},...}, every £ € X[ 7y is a collection of tuples of subintervals
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(tagged via its left time boundary) and events happened in this interval. Sets are
disjoint if and only if they don’t share any common event per subinterval, because
the “no-event” subintervals are not part of [0,7] X X. But since the number of
“clicks” are just summed by k for each input set, x splits into the sum of images of
those disjoint sets. The map is therefore a counting measure. O

Nets Of Point Processes

We now have a counting measure on ([0, 7] X X, Xjo 71) w.r.t. to certain choice of

an element (z;);cro) € X¢. Since a point process is defined as a counting measure
valued random measure, we have everything we need in order to define such a map.

Definition 6.15. Let © € 3([0,7]) and p € T(K) be a state. We then define the
following point process:

%9 : (X(%7:£%7Vp) — CM<[07T] X X7 %[O,T})

(xi)ieI(@) () =R ((mi>iel(@)7 ) . (6.25)

As outlined before, one can write every proper point process as the sum of Dirac
measures. ‘Pg is proper, since X was assumed to be at least a complete metric
space. One easily sees that

i (&)
Po ((%)z’e[(@)af) = Z 5(%,1@") (6.26)

n=1

is an equivalent formulation. As usual for stochastic processes, we will omit the
first argument of Pg, since it will always be clear from context.

Considering nets we had the problem earlier that the image spaces of different
operators, i.e. Kg, didn’t coincide. We therefore embedded all the image spaces into
a common Hilbert space K 7. We now have the situation where every point process
has a 3([0,7]) dependent domain. If we want to have the same probability space
for all possible discretizations, and therefore define point processes on a common
domain for all interval decompositions, we can use the following embedding T and
push the measure v, forward along it.

T X§ — Xeow = | An([0, 7)) x X,

n=0
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(0, ,xl,O,...,O,xn, ,O)H (til—h"'Jtin—l) X (I‘l,...,.%'n), (627)
) )

pos. % pos. i,

where A,,([0,7]) denotes the set of ordered n-tuples in [0,7]. One is then able to
define the probability space (Xcom, Xeoms Ls (Vp)), with the Borel o-algebra X ..
A point process on X, is then given by

m@ : (Xcom7 %Coma T* (Vp)> — CM([O7T] X X’ %[OvT])

T ((#:)icro) — Po ((@)icre): +) - (6.28)

Heuristically taking a refinement limit now should be seen as a net of point processes
© —— Pg converging to a Poisson process. We continue further elaborating this
idea. But before we do this, we need to talk about the subtle relation between
characteristic functions and expectation values of Weyl operators.

6.5 Characteristic Functions as Expectation Val-
ues of Weyl Operators

Let us recall that the discrete field operators w.r.t. a function |\) € L*([0,T],K)
were defined on every subinterval of © € 3([0,77]) as

< 0 VRN
®:K—BCaK), &(ymlh)= _ (6.29)
AR = oy Y

and the Weyl operator was the operator exponential, tensored over every i € 1(0).
Note that, since ® is skew Hermitian, we omitted the usual imaginary ¢ in the
definition of the Weyl operator.

If we want to learn about the stochastic process corresponding to the discrete Weyl
operators, we need to look at the POVM (or in this case PVM) which canonically
belongs to the operator ®g(|A)). Since i®g(|A)) is a self-adjoint operator”, it has
well defined spectral projections. Those projections canonically imply a PVM with
values in B(C & K).

3 Actually this even holds for each of the operators i®(\/7; ‘XZ>)
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Corollary 6.16. Given |\) € L*([0,T],K) we see that the spectral projections of
P (\/FZ ’)\Z>) are given by:

M, (|A)) e BIC®K), M (X)) == (

_ ~ 11 —{e
M_(|X)) e BIC®K), M_(|N)) = 3 ( | ) : (6.31)
My ([%)) € B(C & K), My ([2)) = (8 - ! ) L (632)

where |e;) is the unit vector in direction ’XZ> Clearly all those operators are pro-
jections and we can recover ® by

® (v [2)) = VAEN|M (1)) = v Il M- (1)) - (6.33)

Proof. A quick calculation shows:

VAN (1A)) = v [llv- ([A))

_ VT T 1 (el _ VTi . b~ fel
2 H ZH _|€i> |6i><6i) 2 ” ZH |€i> |€i><ei|

- 0 €; 0 7\
v ) )( VA

=0 (\/Fz |Xz>) ’
which proves the corollary. O

Notice that 1(©) > i — M; == {M, (|X;)), M_(|\)). Mo (|[Ai))} is a PVM on
B(C & K) for every i € I(0), because those operators sum to the identity. Every
field operator on a single time-step therefore canonically induces a measurement via
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this PVM with outcome space X° = {+,—,0}. This can be interpreted as a kind
of homodyne detection, as seen in [Neul5|[p. 145 et seq.].

If we want to identity this PVM on the i-th subinterval with the corresponding
quantum field operator, one has to let the PVM act on a certain function f; :
X" — R. If we fix |\) € L*([0,T],K) we define f on the three “generating” sets
of X° as

LD =i =valxl. fd=D = =-vallall. o) = £ =o.

One can then easily see that M;[f] := ® (\/FZ ‘X1>) If we want a PVM describing
the whole time interval [0, T] we lift, as before, the domain to the Cartesian product

Xo =[] {+. -0} (6.34)

i€1(©)

and define the PVM M : X3 — B(Kg) in the obvious way, as M; acting on the
i-th factor and imposing linearity. Here X3 clearly denotes the o-algebra of Xg

We have now seen how every quantum field operator, for a given |\), canonically
defines a measurement in the form of a PVM. In the beginning of this chapter,
we have seen how every POVM on B(K) (or B(C @ K)) induces a point process
corresponding to this measurement setup. Before combining those two notions, we
need to rewrite our Weyl operator using the I'g functor.

Corollary 6.17. Using the second quantization notation we can equivalently refor-
mulate the definition of the Weyl operator from before as:

We (|A)) = exp(Pg (|A))) = exp(F@ (q’ (\/Fz }X»)) (6.35)

Proof. We insert the definitions and use the linearity of the tensor product to cal-
culate:

Wo (1) = @ exp(@ (V7i[X)))

i€1(©)

=[] 1@ @ep(@(vih) ®---al
)

i€l(©
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B RETITS St L

1€1(O)

3| DA C RN PR
zEI@)nO

= H exp(1®-- @ (/7 |A)) ® 1)
i€I(O)

= exp Z]l@) ¢ (v7i|h)®- @1

= exp(Fg (CI) (\/;z ‘)‘z>))) = eXP(‘I)e (|/\>))
And so the corollary is proven. O

As outlined before, we are now able to combine the quantum field operators with
the characteristic function, induced by its canonical PVM, via expectation values
of the Weyl operator.

Theorem 6.18. The expectation value of the Weyl operator W (|\)) is the charac-
teristic function of the point process Vg associated with the PVM M and function
f corresponding to the quantum field ® generating W (|\)), i.e.

W), = C(f) = i tr(pde (Tod) [PV] J5).  (6.36)
©c 3([0,17)

The limit is meant to be in the weak-* topology.

Proof. Let © € 3([0,7]) and p € (K1) be a state. We can be rewrite p in the
form

p=lim JopeJ,
©€ 3([0,77)

with © — pg € B(Kg) being a Cauchy net. The expectation value of W(|A)) is
then given by



82 CHAPTER 6. POINT PROCESSES AND COUNTING STATISTICS

(W), = tr(pW(IA)) = tr( lim  JopeWe |A) Jé)
0e 3(0,7])

= lim tf<J®P@W®’)\>Jg): lim  tr(peWe [A))-
©e3([0,77) ©e3([0,77)

So we can restrict ourselves to analyzing the discrete expectation values. In order
to do so, we need to show the following identity first. Let M : X3 — B(Kg) be the
canonical PVM with function f corresponding to the quantum field ¢, generating
the Weyl operator. Due to the linearity of the PVM we look at the i-th subinterval
of © € 3([0,7)) and calculate the action of M; on e, i.e.

M ] = DL () + e M () + 701 ()

o+ - ot o
1 if; 1.if; 1 if; 1 if; )
s€ + 5e e’ —se (€]

- it i ift ifT
(3™ + 3™ Yl L+ leaed (3 + 3 1)

cos(b; sin(6,) (e;
([ eosto) (0 P,
—sin(0;) [e;) L + (cos(0;) — 1) [e;Xes
= exp(@ (v X)) = "V,
One therefore has M || = ¢Vl on all of Xg, since the calculation will always

split linear into the subintervals. We now have everything we need to prove this
theorem. For convenience, let us collect the following identities, which we already
used in this thesis.

I) Equation (6.35), i.e. We(|A)) = exp(®o(|A))) = exp(Te (® (7 [X))))-
II) @ (\/7; |A\;)) = M;[f] as seen in equation (6.33).

III) T'g(exp(A)) = exp(I'g(A)) for every A € B(C & K), which should be obvious
due to the multi-linearity of the tensor product.

IV) exp(M[f]) = M [eif], as seen above.

V) TeM) [ei‘l?@[f]} =Tg (M [eﬂ) from equation (6.17).
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VI) Co(f) = tr(pJ@ (FeM) [ei‘l?e[f]} Jg) = tr (&/);]_@/(F@M) [ei‘ﬁe[ﬂ] ) as out-

=pe

lined in equation (6.18).

If we now analyze the expectation value of our discrete Weyl operator, i.e. fixing
an interval decomposition © € 3([0,77]), we have

(Wo(IA))po = tr(peWe(IN)) = tr(pe exp (Lo (@ (v7 [X)))))

= tr(pe exp(I'e (M[f]))) = tr(peTe (exp(M|[f])))

tr(polo (M [¢])) ¥ tr(pe (ToM) [eFel])

Since Wg converges strongly, one is able to perform the weak-* limit %ﬂ . g
o€ 3([0,T1)

6.6 Nets of Characteristic Functions

We now have a point process, depending on © € 3([0,7]), which should model
beam-type measurements in laboratories (and therefore continuous measurements)
quite accurately. Convergence of those processes can be physically motivated, but
is not mathematically defined a priori on the level of point processes.

For every © € 3([0,7]) we are able to construct characteristic functions Cg(f)
for each of those point processes in a canonical way as seen above. In order to
define convergence of those point processes it seems to be a natural idea to define
convergence with respect to their characteristic functions, since those functions
inherit all the information encoded in the point process.

We have defined point processes corresponding to a PVM coming from the quantum
field itself. In this analysis however, we will be more general, constructing charac-
teristic functions in the case of a general one-particle time POVM F with outcome
space X.

Let us assume, for the moment, that F' is independent of each time-step, i.e. F; = F
for all i € I(©). Physically this would correspond to the situation where we always
perform “the same” measurement on our physical system.
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Theorem 6.19. Let p € T (Kor)) be a state and let F : X — B(K) be a POVM.
For a continuous function f:[0,T] x X — R, with f;(x) := f(t;,x), we write

F [eifﬂ} = /exp(if(tj,x))F(dx) € B(K). (6.37)
X
For every © € 3(]0,T)) the function Co(f), defined as

Co: C([0,T] X X,R) — C

fr—Co(f) =tr [ JhpJoTe (6.38)

F [eiff] ’

is the characteristic function of the point process Pg and measured by the canonical
arriwval time POVM M. Furthermore, the net of point processes converges in the
sense that their characteristic functions converge weak-*,

Note that in this theorem we implicitly lifted the domain of f to [0,7] x X° by
setting f(¢,0) := 0Vt € [0, 7], in order to be measured by M accurately.

Proof. The well definedness and convergence of © — Cg(f) is a direct consequence
of theorem 5.5. The net © — I'g (Jl(c ®F [eiff ]) converges therefore strongly for

all f and hence Cg(f) converges at least weak-* for every f.

Since F; = F for all i € I(©) and M;({0}) = M({0}), we can omit every index on
our POVMs and see the correspondence of M and F' via

M | = / N (dz) = e ONM({0}) + / i@ M (dx)
x° X
10 0 0 10

o of Tlo fer@r@n] g F[eifj]
X

Looking at the definition of a characteristic function of the point process PBg w.r.t.
the measurement M, we see
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(611)

Colh) = tr (pJo (Tob) [¥o1] 15 )

— tr (J@pJe (Fe M) { el D
618) ¢ (ch)pJ@ e ( [ D)

=tr JépJ@ I'e . [eifj] .

which proves the theorem. O

Taking the right continuity conditions we can also take the involved POVMs to be
time dependent and the functions f to be complex valued. We then arrive at a

description of counting statistics for point processes measured by general second
quantized POVM F.

Theorem 6.20. Let p € T(Kjy7) be a state and F : Xjgr — B(K) be a time
dependent POVM. Given a measurable function f : [0,T] X X — C and © €
3([0,T]) we have for every i € 1(O)

exp(if(t, ) F(dt,dz) = F [eif] e B(K). (6.39)

[ti—1t ] XX

The following function is the characteristic functions of the point process Rgo w.r.t.
to general POVMs F for every © € 3(]0,T]):

Co : L°([0,T] x X,C) — C,

1

fr—Colf) :=tr | JipJoTe )

(6.40)

Q=

P[]

Here L°([0,T] X X,R) denotes the set of measurable functions. The convergence
of the net © —— Cg(f) then depends on the specific choice of f and F. Also
note that the characteristic function might evaluate to oo, since we didn’t require
integrability of f.
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Chapter 7

cMPS and Outlook

In this chapter we present the major theorems of [Neul5], mainly the construction
and convergence of continuous Stinespring dilations. We are able to use the results
discovered prior in this thesis in combination with those continuous dilations to
define cMPS, obtain explicit Lindblad equations and find intricate connections to
gauge processes. We end with an outlook containing multiple possibilities to solve
the upcoming PDEs and calculate an explicit example.

7.1 cMPS via Repeated Quantum Observations

We start by collecting the definitions and theorems needed in order define continuous
Stinespring dilations.

Continuous Stinespring Dilations

The following theorems are split into a bounded and an unbounded version, since
the corresponding convergence conditions and necessary assumptions are sufficiently
different.

Unbounded assumptions: Let H,K be Hilbert spaces and D a Banach space
which can be densely and continuously embedded into H. Also let s <t € [0,T].
Furthermore:

U.L. Let U(t,s) : H D D — H be a contractive evolution system with common
core D and generator K.
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UL Let L(t) : H — K ® H be a family of operators fulfilling the following two
properties:

a) L(t) : D — K ®H is a family of operators s.t. V|¢) € D the function
t — L(t) |1) is piece-wise continuous.

b) Analogously to equation (2.15) we have that for all [¢)) € D the infinites-
imal conservativity condition

1
}Zig(l)E\IU(Hh,t)W)HerHL(t) W) * <0 (7.1)

holds.

The typical example for such a system would be that L(¢) is time independent
and that U(t,s) = exp((t — s)K) holds, i.e. U(t,s) would constitute a strongly
continuous semigroup with generator K : H O dom(K) — H. Together with
the condition (7.1), this would be equivalent to £(B) being a standard Lindblad
generator given by

(PlL(B)Y) = (K¢|BY) + (p|BKY) + (L(t)e|(1x © B) L)), (72)

with B € B(H) and |¢) , [¢) € H.

However, if we consider bounded generators L and K, we can modify the assump-
tions in the following way.

Bounded assumptions Let H, K be Hilbert spaces and let s < ¢ € [0,7]. Fur-
thermore let K(t) € B(H) and L(t) : H — K ® H be two families of bounded
operators, s.t.

B.I. The function t — K (t) is continuous and ||K(t)|| < C for t € [0,T.
B.II. The function ¢t — L(t) is continuous.

B.III. For every t € [0,7] we have that

K'(t)+ K(t) + L(t)'L(t) < 0. (7.3)

These sets of assumptions are necessary to define the following important maps.
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Definition 7.1. Let |p) € D and © € 3([0,T]). We then define a map V; : H —
(CoK)®@H foralli € 1(O) piece wise via:

Vio: H—H, lo) — Ul(t;, 1) |)

t;
1
Vi H— KoM, o) — / 1® Uty s)L(s)U(s, 1) ) ds

VT
t;
VitcH— (CaK)®@H, [p)r— (Vi

-1

90> ’ Vz‘,l ‘(70>)

In this situation we define the $1(0)-times concatenated map Vg as

Vo:H — Ko @H, Vo= [] Vi (7.4)
i€I(©)

The convergence of these maps in highly nontrivial and subject of the folling theo-
rem.

Theorem 7.2. The following two constructions are well defined.

Unbounded Case: Under the “unbounded assumptions” the net © —— (Jg ®
14,)Ve converges strongly for © € 3([s,t]). In other words: Vs <t € [0,T], V|p) €
H,Ve >0 30 € 3([s,t]) s.t.

(Vi = (az @ 13) Va) [@) <& VO CEC A e 3([s,1]). (7.5)

Bounded Case: Under the “bounded assumptions” the net © — (Jg®1y)Ve for
O € 3([s,t]) converges in the norm topology. In other words: Vs <t € [0,T], Ve >

030 € 3([s, t]) s.t.

Va—(Iz®@T) Ve <6 VOCECA€e3(s1]). (7.6)

Having shown the respective convergence one can perform the net limit and define
continuous Stinespring dilations.

Definition 7.3. The limit of the © —— Vg constitutes a continuous Stine-
spring dilation and the following maps E(s,t) and E(s,t) can be motivated to be
continuous quantum channels compatible with measurements.
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Vs i H—Kg@H o) — lim  (Jo ® 13)Ve |¢) (7.7)

o€ 3([s,t])
E(s,t): B(Ky @ H) — B(H) X s VI XV, (7.8)
(s, t) : B(H) — B(H) B E(s,1) (ﬂ,cw ® B) (7.9)

Theorem 7.4. The quantum channels ]/Ii:,(s,t) are, seen mathematically, evolution
systems and obey a certain Cauchy equation, as described in equation (2.16).

Unbounded Case: The family of maps I/E\l(s,t) for 0 < s <t < T is a weak-*
continuous evolution system of completely positive maps and a minimal solution to
the Cauchy equation

<¢‘ (s, T)(B) > <¢’5 )(B)¢> (7.10)

with generator

(WILE)(B)y) = (K)Y[Bp) + (W[BK(t)p) + (L(1)Y[(1c @ B) L(t)e) . (7.11)

Bounded Case: The family of maps I@(s,t) for 0 < s <t < T isanorm con-
tinuous evolution system of mormal and completely positive maps and a minimal
solution to the Cauchy equation

%E(s, T)(B) = L(s)E(s, T)(B) (7.12)
with generator
L(s)(B) = K(s)'B+ BK(s) + L(s)! (1, ® B) L(s). (7.13)

Defining cMPS

Having a continuous quantum channel Ej, p; we canonically get a continuous ana-
logue of a matrix product state as outlined in the end of chapter 4. It seems natural
to define the following cMPS.
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Definition 7.5. Under the “unbounded assumptions” let B € B(H) be a bounded
operator containing information about the boundary conditions and let p € T(H) be
a state. A ¢cMPS w is then defined as w = |0 '@ with

I B(IC[()’T}) — C
W — tr(p Eoq(W ® B)). (7.14)

Here, as notation may has implied, the operator W is meant to be a Weyl operator,
since we know that every possible element in B(Ky 71) has to be of this form.

The Weyl operator depends, for our purpose, on three different arguments, i.e.
W = Wi(e,|A),U). Given a quantum state p € T(H) with boundary condition
B € B(H) one can see this cMPS, in analogy to a Wightman field, as a distribution
of the form

C2([0,T],K) 3 |A) — W(A) — tr (p EW(O,T)(B)> e C. (7.15)

There is, however, a freedom in choosing different functions ¢ and U. Physically ¢
would correspond to a “rescaling” and U would implement unitary rotations of the
dilations spaces w.r.t. other. Since both of those notions are physically unobservable
we see ¢ and U as pure gauge related relics.

Since the Weyl operators W are (up to an imaginary factor) generated by the
quantum fields, they can naturally be seen as some kind of translation operators.
The test function |\) is then, as usual for Wightman quantum fields, the object
the quantum field is “smeared out” with. Since IEW(O,T) is strongly continuous,
the cMPS (as the expectation value w.r.t. the state p), is guaranteed to be, at
least, weak-* continuous. This continuity is commonly postulated for physically
observable quantities.

7.2 Outlook

Since the object IEW is quite abstract, the definition of ¢cMPS might seem to be
impractical. There is, however, a crucial fact one can exploit about this evolution
system, i.e. its Cauchy equation. This outlook is designed to state this Cauchy
equation, solve it for a trivial case therefore obtain an explicit cMPS, and discuss
further solution techniques for this task.
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Weyl Perturbed Lindblad equations

The term tr (p IAEW(O,T)(B)) describes the complete dynamics of our quantum

state p, as modeled by a ¢cMPS. The analysis of this term displays, nevertheless,
a challenge. The following theorem (see [Neulb|[Lemma 8.6.]) helps approaching
this task.

Theorem 7.6. Let W € B(Ky 1) be a Weyl operator, i.e. an operator written as

r.0 1+ 776 (A
TiWJe "2 R i sl e B(Ko), (7.16)
iere) \VTi i) Le+U;

with functions ¢ € L'([0,T],C), |\), |u) € L*([0,T],K) and U € L' ([0,T], B(K)).

Let 0 < s < t <T. Under the “unbounded assumptions” let E(s,t) : B(H) —s
B(H) the evolution system of a cMPS w as defined in equation (7.14) via

E(s,t)(X) := Epq (ILB(IC[S,t]) ® X>

with By 7y« B(Kyr ® H) — B(H) solving the Cauchy equations

~

% M E(S’t)(3>‘ﬁ> = <¢‘£(S)E(S7t)(3)<p> (7.17)
5 (v Ben®)e) = - (v[E6.DL0B)) (718)

with the generator L(t) : B(H) D dom(L(t)) — B(H) defined as
(WIL(s)(B)p) = (K(s)¢|Bp) + (Y[BK(s)p) + (L(s)9[(Txc @ B) L(s)p) . (7.19)

Then ]Ew(s,t)(B) = B, g(W ® B) defines a weak-x continuous evolution system,
solving the Cauchy equation

% <¢’ IEvv(s,lf)(B)so> = — <w\ Ew(s,t)ﬁpm,(t)(B)@ (7.20)
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with the “perturbed” Lindbladian

- <w\cpm.<t><B>@>

T (L) + et L) (B))
+(LWUIUE) @ B) Lty
+ Ou(t) ® 9l(1c ® B) (1))

+ (L()Y](Te © B) (A1) @ 9)) (7.21)

O (o] Buls. 0B

with [¢v) e DCH, Be B(H), L(t): D — K®H

Via theorem 7.6 we are now able to gain information about the specific form of
Eyy (s,t)(B) using the equations (7.20) and (7.21). It states, that the interaction of
the quantum system with the cMPS results in a modification of the “unperturbed”
generator L£(t). We continue by explicitly solving this PDE for an especially easy
example.

Example: Gaussian cMPS

The equation (7.20) connects the “usual” time evolution of the quantum system
generated by L(t) with the generator L. () arising from interaction with the
quantum field. It therefore seems to be a fruitful idea to start with a trivial Lind-
bladian, i.e. £(t) = L(t) = K(t) = 0, and therefore look at a pure gauge process of
the form

L(t): B(C)=C — B(C)=C
L(t)( Z 6 ()12 + Zeba ) 2 64(t) (7.22)

where H = C and £ = C" for some n € N and [0,7] 3 t — ¢,(t) € C are
continuously differentiable gauge functions for all 1 < a < n. We write the bold
letter ¢p(t) € C" for the n-dimensional vector.

Since this Lindbladian obviously corresponds to a norm continuous evolution sys-
tem, we analyze the bounded assumptions. Let us recall that there must exist two

functions K (t) : C — C and L(t) : C — C" ® C = C" with
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B.I. The function ¢ —» K (t) is continuous and || K (t)|| < C for ¢ € [0, T].
B.IL. The function ¢ —s L(t) is continuous.

B.III. For every t € [0,7] we have that

K'(t)+ K(t)+ L)' L(t) < 0. (7.23)

In this example we can easily read of the exact form of these two operators as

R(0)(2) = — 3 o) (7.24)

L(t)(z) = (da(t)z -+ du(t)2)" @ 1g, (7.25)

which is exactly the gauge freedom obtained in definition 2.27 with vanishing func-
tions z(t) and U(t). The adjoint operator of K(t) is obviously K (t) itself, since
S ||¢a(t)]|? is a real number. The adjoint of L(t) can be calculated by its action o

(63
arbitrary elements y and v as

3
3

= ¢a(t)zya <1(C‘v> :Ez¢a(t) Yo <]1(C’U>

a=1 a=1

> b, <11<c\v>> = (:[L0' o).

The three bounded assumptions hold, since

I. t —> K(t) is continuous and HJN((t)H <13 sup ¢, (t) < oo.
a=1t€[0,T]
II. t — L(t) is continuous, since the ¢, () are assumed to be continuous.

L K'(t) + K(t) + L(t) L(t) = — 2 oI + 2. 16a(®)II* = 0.
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This gauge freedom results in a perturbed evolution (see theorem 7.6), given by the
Lindbladian

=0, since L(t)=c(t)=U(t)=0

A\

(V1 D) = WILOE) + Wl e®) ) + (6|00 @ ) L)
+ (e 0w |(1e)LMY) + <L<t>w ) COEPY
=z (le@I (wlw) + leOI” (@) = 20| p(®)]” (W)

We are interested in the normalized ¢cMPS w(W) = tr (pI/E\?W(s,t)(z)>. We know

that the evolution system of interest, i.e. IEW(S, t), obeys the Cauchy equation

% <1/1‘ Ew(s, t)(Z)s0> =— <¢‘ ]Ew(s,t),cpert_(t)(z)@>
= 2¢Ol (¥| Bw(s.1)(2)e)

This is a first order PDE and can easily be solved by

Euw (s,)(2) = exp (2 / ¢(t’)}}2dt') . (7.26)

So the cMPS acts as the multiplication with the exponential above. Hence the
cMPS corresponding to the evolution of the quantum state p € T(H) and boundary
condition z € B(H)

w(W) = tr(pf[‘iw(s, t)(z)) =tr (p exp (2/ ||q’)(t/)2dt/) z)
= exp (2/¢ H dt) r(pz) = exp (Q/d) || dt) (7.27)

[43

is a Gaussian state. One therefore sees that working with the
Gaussian noise to our system.

wrong” gauge adds
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Different Approaches to Obtain Moment Measures

Dealing with non trivial systems, the Cauchy equation could become, in theory, ar-
bitrarily wild. However, one is often not interested in the whole counting statistics,
but in the first probability moments.

It is known that the existence of the n-th moment measure is equivalent to the char-
acteristic function being n times differentiable. Let us look at a cMPS with bound-
ary condition B and a Weyl operator depending on a function |\) € L*([0, 7], K),
ie.

W) — tr(pBra (0, T)(B)).

Since the first moment of the quantum field is given by the first derivative of the
characteristic function evaluated at zero it seems to be a fruitful idea to calculate
the expression

9 N
g tr (P Eyw (0, T) (B)>

t=0

To gain further information about the evolution system, one could rewrite it using
the approximation

T

Eyw (0, T)(B) = T exp / Lot (1)(B) dt |, (7.28)

where this integral is meant as a continuous version of

Ew (0,7)(B) = [[ exp(riLpe.(t:)(B)).
i€1(O)

Or, one could try to solve the Cauchy equation

O (0| Bu(s. 0B = — (] B, ) Ly (B
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using a variety of tools commonly used for PDEs, such as variational methods.

Since most beam-type measurements can be modeled to be completely random,
in the sense that “neighboring” chunks of click events do not interact and do not
depend on the corresponding time-step, one could make the ansatz of C'(f) being
of Poisson form. This choice could simplify the Cauchy equation a lot.

Further Research Topics

Since we mainly focused on bosonic systems it might be interesting to see whether
the fermionic approach would yield more constraints on our cMPS and its defin-
ing objects. It would also be interesting to further elaborate the correspondence
between the cMPS as outlined here and its first definition from 2010.

Appendix B also presents a specific representation of the Weyl CCR on the phase
space, as commonly used in the “quantum harmonic analysis”, describing hybrid
systems. The connection of this topic, especially involving its symmetries, seems to
be promising.



Appendix A

Outsourced Proofs

Due to the long formulas, the page geometry is changed for this appendix to landscape.

A.1 Proof of Theorem 2.38

Proof. The first two identities are trivial. To prove the third identity we compute

d d ,
GVEOW )| =W )| =B (W)W ()
t=0 t=0 t=0

Using the Weyl CCR we also get

iB (&)W (n).
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Ywaowm| = Leownr e 4o

d .
= — DWW (¢

dt

t=0 t=0

=io(&,n)eEN W W (LE)|  + "N W (n)iB, (&)W (£€)

t=0

=0 (&;mMW(n) +1W(n) B (S)-

t=0

Hence we see

B(EW(n) = a(&;mWn) + Wn)Bx(§) <= [B:(&),W(n)] = oa(&mW(n).

The last commutation relation is then done by differentiating w.r.t. two parameters in the same way. More formally

d d

dd . . . .
— —W(t _ = & itBo(§) JisBr(n) — iB B (), B isB(n) - _B B
T ds (L)W (sn) T e e . iBL(§)e <(n)e . (&) B (n)
And furthermore
dd d d o
o t _ nso ,77) t
T VHOW )| = L W)

= = (itole,m) €™ W (s (1) + " 3B, ()W (sm) W (1)

t=s=0

SA004dd ddOUNOSLNO 'V XIANHddY

66



= & (it (€, W(E) + B, ()W (1)

= (i0 (& MW (t8) + it (&, )iBr(E)W (&) + i Bx(n)i B ()W (1£))

— io(6.m) — B,(n)B,(©). )

So finally one has

_Bﬂ(f)Bﬂ(n) = Z'U(S, 77) - Bﬂ(n)Bﬂ(S) — Bw(n)Bn(f) - Bﬂ'(f)Bﬂ(n) = ia({, 77) — [Bﬂ'(g)7 Bw(ﬁ)] = —iO‘(f, 77)'

O
A.2 Proof of Theorem 5.1
Proof. Since we have
Q- Q4 & wl
i€I(©) i€I(©) JEI(El;)
it is clear that we can restrict our analysis to the subinterval Kz . Calculating the upper left matrix elements of WZ is a

straight forward calculation

00T

SA004d ddOdNOSLNO 'V XIANHddV



<Ji 10) Q i|0>>:< 10) w) [ ® 10) >
kel(2l;)

JeI(=),) 0 0 /1 \seran rerly) \ 0

:< 2 (" o “v >: T < AL >:jef<a|@.>cj

kel(Z];) 0 J€I(E],) \/T_J ‘)‘j> |0> 0 \/?] ‘)‘j> |0>

JEI(EL)

The upper right and lower left matrix elements work completely analogously, here shown for the (v|-term

<Ji 0 R w; | ’ >:<® 0 X w | Y Z|a@l>>

0 JEIE],) ) keI(=];) 0 ik 1EI(E];) Ti
0) c: 0 ﬂ (v
_ rn< Ne (=0 e z<|;’y>| >
lel(2 kel(= JALEI(Z];) \/Tj’)‘j>|0> Ol|a>+Tl i |O‘>
7 = (V]
() S o wm=o( I o] vams (YD)
o = /i B
JEI(E];) leI(Z];) JEI(E];)

The lower right matrix elements require a bit more thought, because having two (possibly distinct) events leads us to two

different contributions

SA004dd ddOUNOSLNO 'V XIANHddY

10T



(o)) ()

:< 3 Tl\ an| Y TT’” ® (

leI(E],) mel(Z[;) 't jElE

-y v <a@l 0% 1
L,mel(E],) Ti izmel =) \VTi |)‘j> |

VA5, T e (2 talods) + 4

Lmel(E);) Ti JFIEI(E])

T Tm

jelEly) ) tmerE)

()l
JEI(E])

Collecting all terms then proves the theorem.

)

Cl

i

J_m< m|ﬁ>

O+T

7 {alA) <ww>) (=) (

, nalols)

]

\/_< >\< ) w@m>>

Bl ﬁ>) >

1 “m

o () () (e ()

¢ c
H Cj T Tom,
cc

J#l#mEl(E];)

[% (Cll (O] B) + Z—lé {alA) <u,|ﬁ>) + (1= ) VCTlch

(@l el

— (el (vl B)

c01
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A.3 Proof of Theorem 5.8

Proof. Analogously to before we use that each Wg(|A)) is unitary, since ®(\/7; [X;)) is clearly skew-hermitian. Since |) is
bounded, it is sufficient to look at the following norm difference

[Wa(IA)Jae [ve) — JazWa(|N)) Jze |<P®>||2 = 2”806||2 — 2Re (W (|A\)) Jaowel JazW=(IN)) Jzeve)
= 2lpol” — 2Re (zogo | (TLWA(IA)Ta=W=(1N)) Jzovo)

We therefore see that strong convergence of We(|A)) is equivalent to the weak-* convergence of Ji_W1(|A))Jy=W=(|)\)) to the
identity. We use theorem 5.1 to calculate that the operator

cos () —sin(6;,) <€)\k !

WA(IA) = |
kerny \Sn(0y) lex) 1+ (cos(6r) — 1) [ex)Xex|

is embedded of the form

Y

1 - 2 :—itan(Ql)<el|
T=W(IA) Jaz = ® H cos(6;) lEI(Ai)\/>

T T 1
ie1(=) \jel(Al;) M%l.) = tan(6;) [e;) le%mécos(el)ﬂJrAi

with a rather long (but later neglected) term

SA004dd ddOUNOSLNO 'V XIANHddY

€0t



A= S B S YT 0, tan(0y) lexedl € B(K).

T
leI(Al;) l»kel;(]i\h)

The strategy from here on is straightforward: We calculate the matrix multiplication of this operator with another Wz(|\))
and wright down the upcoming matrix elements in orders of 7. The full operator has the form

RWAII a=W=(0) = @ | T cos(9)) ,
iel(®) \jel(Al) Wi, Wir

using the abbreviations

Wy, = cos(6;) + sin(6 A / tan (0)) (er]e;)
le[ A\

Wur = sin(6;) (e;| — Z \/>tan ;) (e;] — (cos(0;) — 1) Z | \/»tan(é’l) (er]e;) (e

1eI(Al;) leI(Al

1 )
Wiy, = cos(6 \/7tan 0,) |e;) — sin(6;) Z Tl‘m le;) — A;sin(6;) |e;)
ZGI (AL) !

ler(al,) "

1 T, cos8(6;) — 1
Wig = sin(0 \/>tan 0)) le;Xe;| + A; + Z = 7 cos(0)) 1+ Z f% le;Xey| + A;(cos(0;) — 1) |e;)e;] -
lEI (A];) v

lel(Al; ) lel(Al;)

0T

SA004d ddOdNOSLNO 'V XIANHddV



To prove that this expression converges to the identity, we need to rewrite every term in order to see whether terms cancel or
not and approximate the non vanishing terms to relevant order in 7;.

Order approximation and common refinement:

Before we are able to approximate the full expression correctly, we need to restrict |\) to step functions again, i.e. we assume
I\ € P=(L*([0,T],K)), since Z is the coarsest interval decomposition involved. Note that i € I(Z) and | € I(Al;) with I # i
and because A|; C = we have H)\lH = ||)‘1H> which implies |e;) = |¢;) and also Y 7 =T;.

11 (Al)
The trigonometric functions are to first orders given by

~ 3/2 Y g Xl 2 Y 3/2
sn(ya Rl = vl + 0 (7). sty =1- 2 Lo @) () = vA IR+ 0 (7).

Since the full matrix is quite massive, we split the analysis into the smaller matrix blocks and apply those approximations
separately.

C-valued part Wyy,:

In this matrix element only terms of zeroth and first order of 7; are allowed. We calculate:

X _
Wy, = cos(6;) + sin(6; \/7tan 0)) (ele;) =1 — H H —l—\/_”)\ H Z N H)\ZH<€ e
ZGI (Al) lel(Al;) VT
Xi — T; Xz 2
Lol ey B

SA004dd ddOUNOSLNO 'V XIANHddY

GOT



KC-valued parts Wyg, Wir:

Both K-valued terms are zero as we will see now:

Wuyr = sin(6;) (e;| — Z 1/ tanel (e;] — (cos(6;) — 1) 1/ tan&l el]e éil
1€I(A];) 1€1(A];)

t.r.o. ~ l 3/2 /\ Tl ~
DN IO S AR 2” > e

leI(a),) leI(Al;) *

= vallull tel = va [l el +0 ().

:0

And respectively

1 .
Wiy, = cos(f \/7tan 0,) |e;) — sin(6;) Z Tém|ei>_Ai81n(9i)lei>
leI( l+)

leI(Al;)

T —sin(8. E—l sin(6. E; —sin(6,
= [cos(Hi)l Z‘) \/;itan(el) (6:) Z 7, cos(6)) + sin(6;) Z T; cos(6;) (6;)

leI(Al;) * ler(A)) "

N

-

=0

—sin(@) Y Y an(6y) tan(6y) | e

Ti
LkeI(Al,)
1k

90T
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.10, (e 7'1 -
= [(l_ H2 H) Z)fIIAZII—fHAII EIR YD E HAlHH)\kH] )

leI(A| LkeI(Al) °
Ik

[f DN Z’“.Z’melll ) = 0",

LkeI(Al;) *°
£k

—O

B(KC)-valued part Wiyg:

1 7, cos(6;) — 1
Wir = sin(6 A / tan (0)) le)e;| + A; + Z Tl - + Z _lcc()s—()él) les)ex| + Ai(cos(6;) — 1) |e;)e]
e](A|

leI(A],) 5(61) leIa),)

Ti i cos(6;) T |€ Xeil
— / i _ A, Me.
= sin(6 tan (6)) |es)es| + E - cos( 3 + E - cos(0) leiXe] E 7. cos(0y) + A; cos(;) |e; el
ZGI A| lel(Al) leI(A])

II(A];)
T 7 lei)ei]
= A / t (6)) - M
= sin(6 an(6) fes)e] + Z o cos( 1) Z 7; cos(6;)
le] A| leI(Al,) le

I(A])

T T
Feos(ly) Y el —cos(B) Y Y tan(d) tan(6) leie
IEI(Al) LeI(AL) ‘

t.r:.O. Z E]l + O(TZ) =1 + O(TZ)

Ti
leI(A];)

Combining all of this we have

SA004dd ddOUNOSLNO 'V XIANHddY
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< 12
.r.0. j j 1+ 0
sewinaenzgn = @ | IT 1- 2Rk ) (e
i€l(8) \jel(Aly)
And taking the limit one finally obtains
<112 <112
lim T W) aaW=(N) = ) exp | — / ) o / I
ASE AEVYV A AEVYVE p 2 p 2 )

which proves the theorem.

80T
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A.4 Proof of Theorem 5.11

Proof. The explicit calculation of the operator multiplication is, due to the long terms, shifted here. We calculate the desired
expression to relevant order:

We(IA)We (lm))We (= A + 1))

Q) =3I AN (- EP vE @D (-2 Nl —vE O+
ic1(®) —\/T\W 1 —V/Ti ;) 1 N 1

_ @ (1R - ) Ry (1 SRR R
ie1o) Vi M) = V7 ) 1 NN 1

- ® Loy [ =3I = 4l = 3%+ Al + @) + 8+ 7l 7 [l + @l = o+ ) |
i€1(©) _\/_i[|/\i>+|”i _{/\i+“i>} 1

The off-diagonal terms are trivially zero. Looking at the upper left matrix element and using some norm reformulations we see

1,~ 1 1,~ - — _
1+, {—§IIA¢H2 = Sl = SI% + Al + v + I+ X - 2Re(<m|Ai>)]
1,—

1 1,~ — — _
=1+7 {—5\\&-”2 = Sl + SR+ Al + (Fln) - () - <Ai|m>]

= 1t [Re(([R) — (W] = 17 |5 ulR) - 5 (| = 1 i (R ).

SA004dd ddOUNOSLNO 'V XIANHddY
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One therefore has

iy
©c 3([0,71)

which was to prove.

t.r.o. . 1— Z'Ti Im Xz _i 0
WolIA)We(l)We(— 1A+ 1)) "2 liny (i)
©€ 3([0,77) 0 1

= exp /—i Im(<X|ﬁ>)dt 1= exp(—z’TIm(<X|ﬁ>))]1,

01T

SA004d ddOdNOSLNO 'V XIANHddV
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Appendix B

Quantum Harmonic Analysis on
Phase Space

We now want to restrict ourselves to the, considerably, most famous example of
a symplectic space. Let (Z,0) be the phase space of classical mechanics, i.e. a
2N-dimensional vector space with symplectic form ¢. Furthermore we will consider
the following;:

i) Symplectic space: = = span {(p, q) ’ pE Rgo, q e RN}, equipped with the
Lebesgue measure dV¢ = (2rh) VdVpd™g. We set h = 1.
ii) Symplectic form: o((p,q), ®,¢)) =p-¢ —q-D".

iii) Representation space: H = L*(RY,d" ).

To keep notation simple, we will denote the complex conjugate of the complex
number z in this (and only this) chapter by Z. Otherwise, additional stars would
make the proofs in this chapter barely readable.

Since we now have defined the phase space with its symplectic form and having a
Hilbert space we can construct an explicit representation of the Weyl CCR.

Corollary B.1. For z € RY, € = (p,q) € Z and ¢ € H we define the Weyl CCR
representation:

q

(W ((p, @) (@))(2) = W(E) () (x) = e F P y(x + q). (B.1)

This representation is well defined.
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Proof. We have to show that the given W () is a unitary operator for every £ and
that W obeys the Weyl CCR. Starting with the commutation relations, one obtains

W(EW () () (x) = Wp, W, ¢)(@)(2) = W(E)e 247 (o + )

—e 2 -‘rip’.;(; @ipTAq—i_ip.de(.T—i—q/—FQ)

. / . /
wp-q q-p

. / / ’
= T SR g g 1 )

. / !
i(pg —qp)

=e 2 W(E+n)(@) ()

Its adjoint can be calculated by

ip-q

IO = [ s TDWEOW)@) = [ a0 5@ e F 7 pla+ g

RY RY
— [ @5 GG g )
RN
— [ @ UG g E )
RN
— @5 06 - 9 T @) = (WO w)e),
RN
Therefore we have W (p, ¢)' () = W(—p, —¢)(¢)) and hence the given W obeys the
Weyl CCR as in equation (2.26). O

We start with a very important theorem, which will be used quite often.

Theorem B.2. Let py, p, € T(H) trace-class operators. Then the function

& — tr(pW (W (E)') (B.2)

15 integrable and W is an isometry in the sense that

/ Ve (oW (©pW(E)') = tr(p1) tr(pa). (B.3)
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Proof. Since py, ps € T(H) are trace class and therefore especially compact opera-
tors, we can rewrite them via their spectral decomposition as

pi=> AP, with i=12,
n=1

where the point spectrum o,(p;) = {A1, Ag,...} consists of, at most, countably
infinite elements with zero as only possible accumulation point. The sum converges
in norm. Since the trace is linear, we just need to look at the case where p; = P;, =
19;)(%;| are one-dimensional projectors with ||¢;|l,, = 1. The integral (B.3) then
reduces to

[@eu(pwomme) = [a¥e Y (v

Py, WP, W(E) W)

A€ (VoW (E)tha) (oW (=€)thr)y

_ / AVE (g W (E)ha)y (01 TW (E)a)
/ Ve | (1, W (E)b) HI

We define ¢, (z) := )y ())y(z +¢) and see that ¢ (r) € L'(RY,d"z). Furthermore
we have

wmwwﬂmmﬂz/&%aﬁﬁwwgmwmw

RN
=% [ Ve (@) "y (a + )
RN
= [ @ap @ = @m0, (B4)
RN

where @, (p) denotes the Fourier transform of ¢,(z). Hence
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g 2

2 94(p)

dVq¢d¥p

B3)= [aelmweua 2 [

’(QW)N/QG

:/ d"paVq|@, ()| = / "z d"q|p,(x)]"

= /dequ

R2N

= /dNa:qu

RQN

RY xRY
2

Y1(7) s + q)

|2
D@ 1alw + @) = Il I, = 1.

where we have used that the Fourier transformation is an isometry and therefore

/de}@(p)} :/de|g0q(x)| VqeR".

rY, RrY

]

In so-called “hybrid systems” one is going to encounter spaces of the form A =
Ay @& A;, where A, describes the dynamics of classical physics and A; of quantum
mechanics. A typical example would be the space of observables L®(Z,d"¢) @
B(H) =2 R™ = Ry @ R°. At first we need to define some operations on those
spaces.

Definition B.3. Denote the set of complex valued functions on {0,1} X E as € =
6o ® €, and the subspace of square integrable functions will be denoted as €* =
€5 ® 6L with the product'

(f9)i(©) = > fil©)grsa(9). (B.5)

kEZ

The Fourier transformation 7 will be defined separately as F% = Fo @ F; :
R! — € with

Fo: L'(Z,d8) — %, (Fof)(€) = / dn 7 f(n) (B.6)

'Whenever we encounter the space Zy we equip it with the addition mod 2.
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T I(H) — 4, (F1A)(§) = tr(W(E)A). (B.7)

This Fourier transform obeys most of the usual notions one would expect, for ex-
ample its compatibility with the convolution, i.e. #(Ax B) = #(A)Z#(B). We
need to mention one very important theorem, since it will be quite relevant in the
ongoing discussion.

Theorem B.4 (Bochner). Let f: {0,1} X = — C be a function. f is the Fourier
transform of some positive T € R iff f is continuous and for all &, ....§, € Z and
21y 2y € C the two following identities hold:

n

i) > fo(§ —&k)Zjz > 0.

jk=1

ZZ) Z f1(£] — €k>€%a(6]7£k)zjzk > 0.

jk=1
Proof. A proof for this theorem may be found in [Luk70][Theorem 4.2.1., p. 71]. O

We can now focus on special examples of channels and analyze their behavior acting
on Weyl operators.

B.1 Gaussian Quantum Channels

Let T : ¥(H) — T(H) be completely positive channel and covariant w.r.t. the
action ag, i.e. aT'(p) = T(agp) ¥§ € Z. The notion of covariance of semigroups and
their application to quantum channels is due to Holevo [Hol95a]. The dual space of
T(H) is B(H) and T' : B(H) — B(H) is completely positive and covariant, too.
If we consider the “translation” action of «, on the adjoint, we see

o, T () = THa, W (©)) = T (WiyW (W n)') = 79T (W (). (B.3)

0(7775) ]

The complex phase ¢’ is the eigenvalue to the translation. Furthermore we can

conclude:

Corollary B.5. The following equivalence holds for alln € = and A € B(H)

ap(A) = e7MA — A= W (), reC. (B.9)

n
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Proof. The statement is already shown for A being a Weyl operator. Let A be an
arbitrary operator and A = AW (€)', then agA = A and AW () = W(§)A. But
that can only be the case when A = A1 for a A € C, which proves the statement. [

This corollary implies that T (W (€)) = A(&)W (£) and we see:

Proposition B.6. The following equation for T holds

FT(p)&) =XNE(Fp)E), peZ(H). (B.10)

Proof. We start by letting the Fourier transformation act on both sides of
THW (€)) = M€)W (€) and use its linearity:

Analyzing both sides separately and using tr (p TT(A)> =tr(T(p)A) and the cyclic
property of the trace, we obtain for the LHS

(ZT' W (©)) () = e (W T (W (€)) = te(T(W () W(£))

= te(W(T(W(n))) = (FT(W(n)))(E)-
And similarly for the LHS
AGFW(E))(n) = AE) tr(W ()W (£)) = A(&) tr(W ()W (1))
= MEOFWn))(&).
Comparing both sides and denoting W (n) = p proves the statement. [

We can use Bochner’s theorem to get necessary criteria for A(§) such that 7" remains
completely positive. One example of an allowed choice of A would be the Gaussian
function A(§) = e~ with a linear operator Y : © — Z. If we allow the argument
to be transformed, we’ll get a more general notion:

THW(€)) = e " W(X¢), for X,Y :Z — = linear. (B.11)
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A channel T that admits such a A will be called a Gaussian channel. Using the
Stinespring theorem, we’ll obtain necessary criteria for the complete positivity of
T

> BT (4lA) B> 0. (B.12)

J,k€Zg

For the A, B we choose Weyl operators, s.t.

> W) T (W(e) Wi(g)) wim)

7,k€Zy
_ Z 029 (=&:6k) W(nj)TTT (W(_gj + 6k)) W (n,)
7,k€Zy

_ Z e—%0(53"ﬁk)—(fk—fj)Y(ﬁk—ﬁj)W(T]j)TW(X(gk _5]))W(77k)
3,kE€EZy
= 37 e Y O S+ X [y (Y (- X)W (XEW (),

J,k€EZg

where the last equation comes from the CCR, since

W(XE, = X&) = e O TIW (- XE)W (Xey).

Using W(—-X¢;) =W (Xﬁ’j)T and defining S; = W(X&)W (n;) we get

W(X¢, — X&) = Z o &Y 6 €Y G 26 Y €= 50(€5,60)+50(XE;, X&) StS,.

3,kE€Zy

Since the S;Sk term is positive it is a sufficient condition for semi definite positivity
that the exponent is positive. Writing the symplectic form in a basis, we denote
the symplectic form as its matrix representation o. Hence we require the following
matrix to be non negative:

exp (—@Ysj — GV & +25Y 6 — 5606 + %X@-axgk) >0 ik (B.13)
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Since the first two summands are Gaussian and therefore positive, we can state the
sufficient condition

exp (gj (2Y — 50+ %XTUX) gk) >0 — 2V - (7= X"0x) 2 0. (B.14)

Composition of Gaussian Channels

Consider two Gaussian channels 77,7, in the Schrodinger picture, ie. 17,7, :
T(H) — F(H). The concatenation of those channels is again a Gaussian channel,
since

TiTo(W(E)) = e Ty (W(X,)) = e 28 M0 117, X,¢)
— W (Xe), (B.15)

with X = XX, and Y = Y, + X2V X,. If X is derived via a semigroup, i.e.

X, =exp (tX) and X;,, = X, X, with generator X = %Xt , we get
t=0
T ,_d
Vis =Y+ X, Y. Xy, Y==VY| , Y=0
dt “li=o

t
— VYV, =X'YX,, VY= / ds XTY X,
0

When this is the case, we denote the channel as T,(W(£)) = e "  W(X,£). The

c.p. condition becomes

d i ,
= <2Yt— 5 (U—Xt aXt>> g
i (d oy s [d
—ov 4+ L[ ExT ) ox, + XTo (S x
+2 |:(dt t)o- t+ t0-<dt t>:| t=0

. ) d .o ; vy d .<
—9oyv +% [(Eem ) ceX 1 etX o (@gx)]

(XTa + UX) > 0. (B.16)
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Theorem B.7. There exists a correspondence between pairs (X,Y) and (M, H) of
2n X 2n matrices, s.t.
o (X,Y) real and 2Y + i (XTU+UX) > 0.

o M complex valued, M >0, M* = M" and H real, H = H".

The correspondence is given by

X=(ImM+H)o (B.17)

- 1

Y = —§O<R€ M)o. (B.18)
Proof. Since ¢ is the matrix representation of a symplectic form it satisfies o7 =

—oc=0". Using this and the assumptions from the theorem one can compute the
positivity condition (B.16) as

(B.16) = 2V +% <XTU + 0X>

= —o(ReM)o + % (—0 (ImM + H) 040 (ImM + H) a)

= —o(ReM)o + % (—o(ImM*)o +o(ImM)o —cHo + ocHo)
= o(ReM)o" + %U(Im M*)o" — %J(Im M)o"

=0 (ReM —ilmM)o" =oM*c" >0 < M >0.

]

Theorem B.8. The aforementioned matrices (M, H) generate the same dynamical
semigroup as (X,Y), i.e.

d .
_T‘t _ Eq.f. — £LGdblad' (Blg)
dt |,

The proof is outlined in [Sie].
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Theorem B.9. The Lindbladian of this Gaussian evolution, i.e.
1
Z ([Ra, WIRs + Ry [W, Rg)) — 3 =Y H.s[R,Rg, W],  (B.20)
a,B8

s of standard form

LW)=EK'W+WK+> M,R,WR, (B.21)
o,

with K = —3 Z,@’( —iH),sR,Rs and operators {R,},_

77777 on, Which are defined as

(Rl7"-aR2n>:(Plu""Pan17"'7Qn)'

Therefore the Weyl operators are (up to a unitary representation) of the form
W(g) — ezgR — elza £aR(x‘

Proof. We prove this theorem via a straightforward calculation. Plugging K into
the standard form and reorder the terms we have

=—= Z RyR, (Mg + iHig)W — —W Z — iH,5)Ro Ry
+Y MR WER;
a?IB
1 i 1
=> —5MpaRsRaW — SHos RgRaW — S MosW Ry Ry
a?IB

+ %HQBWRQRB + M,;R,WR.

Comparing this with

(B.20) Z w3(RaWRs — WR,Rs + R,WRs — R,RsW)
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- % N Hos(R,RsW — WR,Ry)
a,B
1 1 i
=> —5MasW RoRg — S Mos R RgW — 2 Hog Ro RgW
a,B

4 %HaﬂWRaRﬁ + MosR,W Ry,

we obtain equality. O]

The biggest merit of this analysis is, that the standard form of the Lindbladian gives
us insight about the interpretation of open quantum systems. The Lindbladian
(B.21) clearly splits into two parts:

i) A dissipator given by Z(W) := K'W + WK.
ii) A jump map given by J(W) := > M,sR,WRg.
a,

Evolutions of the dissipator belong to evolutions of the form W —s U(t)'WU(t),
where U(t) is the semigroup generated by K, i.e. U(t) = exp(tK). However, look-
ing at the definition of K, we see that it contains itself two contributions.

The first part of the evolutions is unitary, since it is generated by ¢H and corre-
sponds to a free evolution. Secondly there is the manifestly negative operator in
K “destroying” information, in the sense that there are pure states |¢)) € H with
|U(t) |)|| < 1 for ¢ > 0.

Evolutions generated by the jump map can be interpreted as quantum events in-
tertwined with a absorptive evolution as outlined in [Neul5][Section 3.1.2.].

Those Gaussian channels yield mathematically rich structure and should be an
interesting toy model for the continuous measurement formalism explained in this
thesis, especially because a lot is known about quantum systems with Lindbladians
in standard form.
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Nomenclature

Algebraic Constructions

(E,0) Symplectic Space

a* Complex conjugate of a € C

f-lim X Inductive limit of the inductive system (X, f;;)
icl

f-lim X Inverse limit of the direct system (X, f;;)
icl

lig Net limit w.r.t. the directed set I

il

Eli;% Discrete comparison limit

A Topological dual of the vector space A

Al Positive elements of the Banach algebra A

[ Mlop Operator norm

a(A) Spectrum of the Banach algebra A

Ve Complexification of the real vector space V'

CCR(E,0) CCR C*-algebra over the symplectic space (2, o)

Continuous Measurement Constructions

M (|\)) Averaging the function |\) over the Z|; subinterval

le(N)) Limit exponential vector

leg(A)) Exponential vector w.r.t. the interval decomposition ©

Ke The discrete dilation space w.r.t. the interval decomposition ©

Kio,r Limit dilation space
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i Average of the function A over the interval [t;,_,t;)
W(\),U) Continuous Weyl operator
Wo(|A)) Discrete Weyl operator without unitary rotations

Function Spaces

([0, T],K) Schwartz functions on K

Step;([0,T],K) Step functions on K

c(0,7),K) Continuous functions on K

(0, T],K) Smooth functions with compact support on K

L(X,Y) Measurable functions from the measureable spaces X to Y

LP(S,Q, u, X) p-times Bochner integrable functions over a measure space (5, €2, 1)
on a Banach space X

Number Sets

N Natural numbers

Ny Natural numbers including zero

Z Integers

Q Rational numbers

R Real numbers

C Complex numbers

3([0, 7)) Interval decompositions over [0, 7]

1(©) Index set of the interval decomposition © € 3([0,77)
#1(O) Cardinality of the set I(©)

Operator Spaces

B(X,Y) Bounded linear operators from X to Y

CB(A, B) Completely positive maps between C*-algebras A, B
T(H) Trace class operators on H

K(H) Compact operators on H

L(X,Y) Linear operators from X to Y

Y
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NOMENCLATURE

Stochastic Constructions

(TF)
I'e
CM(X,X)

plf]

Do (|A))
T. (1)
C(f)
c(f)
Abbrevations
CCR
CCR
cMPS
FCS

iff
MPS
POVM
PVM

t.r.o.

Fock space observable corresponding to one-particle POVM F
Second quantization operator functor

Counting measures on a measurable space

Point process w.r.t the interval decomposition ©

Integral over the function f with the measure pu

Second quantized field operator

Pushforward of the measure p along Y

Generating function of the factorial moments

Characteristic function of a stochastic process

Canonical Anticommutation Relations
Canonical Commutation Relations
Continuous Matrix Product States
Finitely Correlated States

if and only if

Matrix Product States

Positive Operator Valued Measure
Projection Valued Measure

to relevant order in 7
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