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Figure adapted

/\vfrom (1, 2]

Atom interferometers like the VLBAI in Hannover
are highly accurate sensors for the gravitational field o
and span about 10 meters.

Motivation

New atom interferometers are planned with baselines —_
of more than 100 meters. '

And even atom interferometers in space have been
proposed.

Question: How do you model complex gravitational
fields and even general relativistic effects in such
guantum systems?
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PPN Hamiltonian

Our theory colleagues working on general relativity

Domenico Giulini and Philip Schwartz [3] developed a
Hamiltonian describing:

Two point particles (think of Proton and Electron):
1. Coupled gravitationally to the PPN spacetime

2. Coupled electromagnetically to each other
3. EM field coupling to gravity

(Parametrized) Post-Newtonian (PPN) spacetime
1-29 —28% 0
Juv =
0 (1 — 2v(§%) 1
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PPN Hamiltonian
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What we did with this:

We applied this Hamiltonian to atom interferometers.

Created a Python algorithm that symbolically/
Ccalculates the phase shifts (using “SymPy”).

Made it open source for everyone to use it!

Theoretical model: Link to the algorlthm
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What did we do with this algorithm?

We proposed a novel interferometer geometry, the ,CGI*
— “Co-located Gradiometric Interferometer’ —

as a differential measurement between two interferometers:

Mach-Zehnder
Interferometer

Symmetric Double
Diffraction Interferometer
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(Leading) Phase shitt of a CGl

Phase comparison of MZI and SDDI

Magnitude [rad] | Differential signal 9 9 3
1.4 % 107 AP =
(18
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Gravitational potential: ¢(z) = ¢o + gz — §F022 +O(z°)
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Arbitrany gravitational fields

1
Consider gb(Z) — qbo + gz —§FOZ2 with a constant gravity gradient.

with a non-trivial T'(2) = 02¢(z) = Gravitational curvature

. Example: Gravitational field of VLBAI Hannover [1, 2]
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CGl: Numerical simulation in VLBAI [ =
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Averaging gravity

Where are the atoms ,,on average“?

Answer: It depends on the averaging process!

oTw 1/n

12Ol = | 57 [ 120~ zl"

n

|z, 1 0.66 AR} 0.73Ah | 0.77Ah | 0.79 Ah | 0.82 Ah
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Estimator for grav. curvature

We can now define a novel estimator I'(zg) for the grav. curvature:

Step 1: Convert phase to grav. curvature using the scale factor.

f(zo) _ A(I)]EZO)

Step 2: Shift the height via the cubic mean of the trajectory.

e = 2020 = (0

Reminder:
2+1.2 m3d__—~—» Motivation for the cubic mean.
N2hk2T3

m
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Relative Error AL'/(T) [%]
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L

Outlook / Summary pair(?)

 We introduced the ,CGI" —
giving us information about
gravitational curvature.

* (Gives rise to a novel way to
measure gravitational field in
large baseline interferometers.

* Possibility to measure the
gravitational curvature using
more compact devices.
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Hammerer group

Thanks for listening!
Any guestions”

Gaaloul group
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Other References:

* [1] Schilling et al. ,Gravity field modelling for the
Hannover 10m atom interferometer”

* [2] Lezelk et al. ,Understanding the gravitational and
magnetic environment of a very long baseline atom
interferometer”

e [3] Schwartz et al. ,Post-Newtonian Hamiltonian
description of an atom in a weak gravitational field.”
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Finite speed of light (ESL)

There are additional phase shitts, if one includes the FSL into the model!

Example: Two-Photon Bragg transitions would lead to an additional phase

4RNk*T Nk
A(DFSL = R(4gTR — Vo — —) + A(I)(),
mc m
2hN?k*
with a constant shift A®y = - (2z1. — 20 — ZU)-
Lower laser Upper laser
position position

Not that problematic,
since constant in time.
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FSL with two-photon Bragg transitions
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Photon paths of the example (FSL effect exaggerated).
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FSL mitigation scheme

The time-dependent FSL phase can be mitigated!

hk(]. —+ ADet)

- : U

/ Alter the last AlF pulse by:

Vo + & —48TR hk

A (VO9 T ) —

>

0 TR 2 TR

‘This frequency chirp (~ 100 MHz) nullifies the FSL phase. \
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,JUnwanted” additional phases
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Gradiometry in complex fields

region of interest (ROI) _ 1. _Cqececcccccccccccaccaacann- - = g ChangeS!
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groundfloor 1 -
MZI 1 MZI 2
n A/\‘ Each Mach-Zehnder Interferometer (MZI) measures ,its” g.
'y =
Az

Divide change in g over the height difference.

\__~
If you want high spatial resolution —> Make A\ z and A} small

—> Higher measurement uncertainty
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