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Introduction & Motivation

idealised gravitational fields [1, 2].

test masses have been used to generate additional sources of the gravitational field.

model of non-ideal gravitational fields becomes evermore important.
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e Atom Interferometers become ever more accurate as quantum sensors, especially regarding measurements of gravity. We previously analysed how (general) relativistic effects alter interferometers (IFs) in

e Additionally, local gravitational effects have been analysed in the context of ,spacetime curvature® and gravitational tidal effects [3]. Also in recent gravitational Aharonov-Bohm-type experiments [4], macroscopic

e However, local gravitational effects like those can also be unintentional: Ground water variations, concrete structures, lab equipment, or even people disturb the gravitational environment. A detailed theoretical

——> Using the gravitational field measurements of the VLBAI in Hannover, we can model future experimental setups very accurately. We do so using an open source Python algorithm.

——> We present a novel IF geometry that — dominantly — results in a phase which is connected to local gravitational field fluctuations.

Novel Interferometer Geometry for Tidal Phases

Gravitational potential expressed via its Taylor series around the origin:
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Consider the following differential interferometer geometry between a Mach-Zehnder
Interferometer (MZI) and a Symmetric Double Diffraction Interferometer (SDDI):

2(1) Tidal Phase Interferometer (TDI)

Resulting from the finite speed
of light (FSL)
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Similarly analysed in [3] and
described as a ,tidal effect”
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This ,tidal phase® arises from the propagation phase along the quadratic term in the gravitational
potential. It is therefore at least cubic in time and quadratic in the photon recoil.

The interpretation as a ,tidal“ effect comes from this quadratic behaviour and is similar to the effect
discussed in [3], i.e.
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as in [3] with a grav. non-linearity /., — ¢(2) (())

Mitigating the FSL phase shift:

The FSL phase depends on the explicit experimental setup and the type of laser interactions, i.e. being
single, or two-photon interactions and the photon path lengths inside of the IF baseline [6].

Consider Bragg transitions, i.e. two light fields with individual wave vectors k1, —k9 and effective
wave vector k = k1 + ko . The FSL phase is given by:
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Introduce a detuning of the last pulse like hk — (1 + 0) hk with § << 1.
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Aquire an additional phase of A®aqditional = 2N kT (’U() |

Choose detuning (as a function of U

Detuning frequency over time

and 'I") such that FSL phase cancels.
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Phase Origin - Idealized Gravitational Field

To get an understanding of how this phase originates, let us 1
° ° P S d(z) = gz — §Fz2 + O(2°)

consider the idealized gravitational potential of Earth, i.e.

The propagation phase is given by the action functional difference along the upper and lower path:
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With the Lagrangian corresponding to the COM Hamiltonian ~ [,(z) = EZ — mgz +

Consider the time interval [T, 2T’ in the propagation phase:

Vanishes in SDDI
due to symmetry!

Initial condition gives
tidal phase in MZI

Tidal phase survives
in differential setup
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HiTec cross-section from [5]

Additional gravitational field:

N ™

Create unique Differential measurements
gravitational field for to obtain gravity variations
each run. as in [J].
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