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1. Motivation
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How It started...

Theory colleagues working on general relativity (GR)
developed this:

Post-Newtonian Hamiltonian description of
an atom in a weak gravitational field

PHILIP K. SCHWARTZ!® and DOMENICO GIULINI}ZP

! Institute for Theoretical Physics, Leibniz University Hannover,
Appelstrafle 2, 30167 Hannover, Germany
2Center of Applied Space Technology and Microgravity, University of Bremen,
Am Fallturm 1, 28359 Bremen, Germany
“philip.schwartz@itp.uni-hannover.de
bgiulini@itp.uni-hannover.de

We wanted to apply this novel GR-Hamiltonian to atom
interferometers (AlFs)!

See Schwartz und Giulini, Post-Newtonian Hamiltonian description of an atom (2019)
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How It started...

Minkowski space W

¢ = Gravitational potential

R \
Juv = Nuv =

0 1

Juv

Newtonian spacetime\\

-1-2% 0

0 1

(Parametrized) Post-Newtonian (PPN) spacetime \\\

PPN parameters
NnGR: 0 =~v=1
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How It started...

P2 1 p>2 e1€9 1 /p? e1€2
nal = —— 1 — r M r R
Ho,final [ (Zp T 4megr T2 2/ T 4reqr H(R)

P* 2y+1 M¢(R)? Center of mass
SM32 T 2Me? 22 ' (COM)
mi1 — mo

Internal dynamics
- {pr . [d X Beoord. (R)] + H-C-}

dmimy Atom-Light-

1 1 -
_|_ @(d X Bcoord.(R))2+ _/d3x (1 _|_ (,y_l_ 1 . |ﬂteraCtIOﬂ

260
Light field

P-¢o(R)P+ (28 —-1)

Look @ elastic scattering processes (first)

—> Populate the excited state only virtually.

1
HAL final = —d - Echbord.(R) + W{P +[d X Beoord. (R)] + H.c.}

Treat light tields classical
—> Maxwell's equations
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Motivation

e Special relativistic effects
have been included for
multiple AlF geometries.

How does gravity enter into
this description?

Which GR effects are the
most relevant?

How can we calculate those
phase shifts accurately and
swiftly”
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SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

Interference of clocks: A quantum twin paradox

Sina Loriani'*, Alexander Friedrich®**, Christian Ufrecht?, Fabio Di Pumpo?, Stephan Kleinert?,
Sven Abend’, Naceur Gaaloul®, Christian Meiners', Christian Schubert', Dorothee Tell’,
Etienne Wodey', Magdalena Zych®, Wolfgang Ertmer’, Albert Roura?, Dennis Schlippert’,

Wolfgang P. Schleich®*>, Emst M. Rasel’, Enno Giese?

The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic)
and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-
relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers

Copyright © 2019
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rights reserved;
exclusive licensee
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for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
NonCommercial
License 4.0 (CCBY-NCQ).

without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear
potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed
experimental geometry for a quantum-clock interferometer isolates this effect.

INTRODUCTION

Proper time is operationally defined (I) as the quantity measured by
an ideal clock (2) moving through spacetime. As the passage of time
itself is relative, the comparison of two clocks that traveled along dif-
ferent world lines gives rise to the twin paradox (3). Whereas this key
feature of relativity relies on clocks localized on world lines, today’s
clocks are based on atoms that can be in a superposition of different
trajectories. This nature of quantum objects is exploited by matter-
wave interferometers, which create superpositions at macroscopic spa-
tial separations (4). One can therefore envision a single quantum clock
such as a two-level atom in a superposition of two different world lines,
suggesting a twin paradox, in principle susceptible to any form of time
dilation (5-7). We demonstrate which atom interferometers imple-
ment a quantum twin paradox, how quantum clocks interfere, and
their sensitivity to different types of time dilation.

The astonishing consequences of time dilation can be illustrated by
the story of two twins (3), depicted in Fig. 1 A: Initially at the same po-
sition, one of them decides to go on a journey through space and leaves
his brother behind. Because of their relative motion, he experiences
time dilation and, upon meeting his twin again after the voyage, has
aged slower than his brother who remained at the same position. Al-
though this difference in age is notable by itself, the twin who traveled
could argue that, from his perspective, his brother has moved away and
returned, making the same argument. This twin paradox can be re-
solved in the context of relativity, where it becomes apparent that not
both twins are in an inertial system for the whole duration. In the pres-
ence of gravity, two twins that separate and reunite experience addi-
tional time dilation depending on the gravitational potential during
their travel. The experimental verifications of the effect that leads to
the difference in age, namely, special-relativistic and gravitational time
dilation, were milestones in the development of modern physics and
have, for instance, been performed by the comparison of two atomic

"Institut fiir Quantenoptik, Leibniz Universitat Hannover, Welfengarten 1, D-30167
Hannover, Germany. Institut fiir Quantenphysik and Center for Integrated Quantum
Science and Technology (IQ®"), Universitat Ulm, Albert-Einstein-Allee 11, D-89069
Ulm, Germany. *Centre for Engineered Quantum Systems, School of Mathematics
and Physics, The University of Queensland, St Lucia, QLD 4072, Australia. *Hagler In-
stitute for Advanced Study and Department of Physics and Astronomy, Institute for
Quantum Science and Engineering (IQSE), Texas A&M Agrilife Research, Texas AGM
University, College Station, TX 77843-4242, USA. *Institute of Quantum Technologies,
German Aerospace Center (DLR), D-89069 Ulm, Germany.

*These authors contributed equally to this work.

tCorresponding author. Email: alexander friedrich@uni-ulm.de

Loriani et al., Sci. Adv. 2019;5:eaax8966 4 October 2019

clocks (8-10). Atomic clocks, as used in these experiments, are based
on microwave and optical transitions between electronic states and
define the state of the art in time keeping (11).

In analogy to optical interferometry, atom interferometers mea-
sure the relative phase of a matter wave accumulated during the prop-
agation by interfering different modes. Although it is possible to
generate these interferometers through different techniques, we focus
here on light-pulse atom interferometers like the one of Kasevich and
Chu (12) with two distinct spatially separated branches, where the
matter waves are manipulated through absorption and emission of
photons that induce a recoil to the atom. Conventionally, these inter-
ferometers consist of a series of light pulses that coherently drive
atoms into a superposition of motional states, leading to the spatial
separation. The branches are then redirected and finally recombined
such that the probability to find atoms in a specific momentum state
displays an interference pattern and depends on the phase difference
A¢ accumulated between the branches that is susceptible to inertial
forces. Hence, light-pulse atom interferometers do not only provide
high-precision inertial sensors (13, 14) with applications in tests of
the foundations of physics (15-21) but also constitute a powerful tech-
nique to manipulate atoms and generate spatial superpositions.

Atom interferometry, in conjunction with atomic clocks, has led to
the idea of using time dilation between two branches of an atom in-
terferometer as a which-way marker to measure effects like the grav-
itational redshift through the visibility of the interference signal (5, 6).
However, no specific geometry for an atom interferometer was pro-
posed and no physical process for the manipulation of the matter waves
was discussed. The geometry as well as the protocols used for coherent
manipulation crucially determine whether and how the interferom-
eter phase depends on proper time (22). Therefore, the question of
whether the effects connected to time dilation can be observed in
light-pulse atom interferometers is still missing a conclusive answer.

In this work, we study a quantum version of the twin paradox, where
a single twin is in a superposition of two different world lines, aging
simultaneously at different rates, illustrated in Fig. 1B. We show that
light-pulse atom interferometers can implement the scenario where
time dilation is due to special-relativistic effects but are insensitive to
gravitational time dilation. To this end, we establish a relation between
special-relativistic time dilation and kinematic asymmetry of closed
atom interferometers, taking the form of recoil measurements
(15, 21, 23, 24). For these geometries, a single atomic clock in a super-
position of two different trajectories undergoes special-relativistic time

10f 10




|[dealized gravitational potential

We expand the gravitational potential in a Taylor series:

O(Ra + 2) qb0+gz——FOz + Aoz + O(z

— N v\

Constant bo = Gravity _
offset R@ grad|ent R3
Li.nee.ar G M, Secolnd G M
gravitational g = 72 gravity Ag = 7
acceleration @ gradient S
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COM Hamiltonian: Propagation Phase

We fol

L(z, %) =

oW a semiclassical approach with
2 1 224 28 -1 2v + 1
o - o)+ | Mo - P mee)? - 2 o))
W WA
The phase of an atom then evolves freely as Bound.
tb conditions
1 :
APy ,p = ﬁ /dtL(ZA%B(t)azA%B(t)) A — (ta Za)
where the atomic trajectory solves the Euler-
ZA—>B(t)

Lagrange equation

B = (tba Zb)
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Atom-Light Hamiltonian: Bragg scattering
le)

W B

Effective recoll
momentum

//\\\ ) ]CR — ka -+ k’b

Effective recoll
frequency

Stanford Seminar — Michael Werner — 31.01.2025



Light Hamiltonian: Maxwell's equations

We analyse Maxwell's equations in vacuum:

Fo' =VPF,5=VF(V,A; - V44,)=0

Three different choices for gauges:

ViAl. — A,;i — O Geometric Coulomb gauge
l %

81Ai — Al.’l — O Background Coulomb gauge
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Maxwell's equations: Geometric Coulomb gauge

Writing them out and using the gauge condition:

0 = FV,U;IU _ A,u;'u;v _ Av;,u;lu

= ¢"0,0,A, - 0,0'A, — ¢'T7,,(0,A, +0,A,) — ¢“'T7 (8,4, — 0,A,)

= g"0,0,A, - 0,0°A)-0,0'A, — g"'T7 1,0, A, + 0,8 T A, + 0,5 T7 A,
— (8,8 )T A, — (0,07 1, )A, — §“T71,0,A, + T ,,0,A,

= ¢"(0,0,A, - T7,0,A, — (0,17, )A, - T7,,0,A, +T7,,0,A,)
B av(avo B 80/11{10140) B (avgﬂﬂ)raauAa—ﬁv(‘aiAi . gmro-/liAO')

= 8"(30A, —T7000,4, = (3,17 00)A = T70,00A, + T70,0,4)
- aV(GOAO - 8OOF(TOOA0) - (5v800)raooAa - (3v8ij)rai Ao
+8"(0,0,4, -T7,,0,A, - (0,17;))A, —T7 ,0,A, +T7 ,0,4A,).

17ty 1jo oty
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Maxwell’s equations: Geometric optics approximation

Ansatz with € < 1 of the following form:

A= (0, +eb,
I,

Amplitudes Phase
a,,b,,c,: M—C - M —R

Q

k,=V,® =0,

eQCM 0(63))6()/6
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Maxwell's equations: [ eading order

O(e?): kuk"a, =0

O leading order, geometric optics ensures that
the wave vector is light like.

k k" =0

E 22) = (1- 200+ D% + 0 ) B(e)

Using some more algebra we also find that kq(z) = ko

3(z)

2

kz(z) === (1 — (V + 1)
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Maxwell’s equations: Sub-lLeading order

Next order equations: O(e 1)

1 2y +1 _ — 1 —
(Va,)) - k+=-a. V- k= 4 -; (0.9)k,.a, — 14 +2 (0.9)k.a, + O(EO, c_4),
2 2c 2c
1 2v+1 - vy+1  — _
(Va,) - k + anv -k = 2 (0,9)k,a, — 52 (0,9)k.a, + O(EO, C 4),

qz) -k + lazv k= L 0,ka, + O, .
2 2c
No corrections to the amplitudes to relevant order.

v+1

. gz AZB
(A) = A = aclor=(- 50 Lore?) win a- A,

0
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2. Systematic analysis
of AlF classes
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Basic" interterometers

(1) +hikpg +hikp () +hky  +hky  +hkg
A A

Bloch

Oscillations

e e = P = = = = = =

Bragg
% % scattering
! t
|—>TR<—|—>TR<—|> |—>TR<—|—>TB<—|—>TR<—|>
(a) Mach-Zehnder Interferometer (MZI) (b) Symmetric Ramsey-Bordé (SRBI)
z(1) +hk, — +hkg  +hkp z(1) +hk,  +hky  —hkp
A . . . . A . . .
<0 - E
<0 - ;
1 1 t : t.
|—>TR<—|—>TB<—|—>TR<—|> |—>TR<—|—>TB<—|—>TR<—|>
(c) Symmetric Double Diffraction (SDDI) (d) Asymmetric Ramsey-Bordé (ARBI)

Stanford Seminar — Michael Werner — 31.01.2025



Dimensionless description

o~
_ 2 . .
A(I) — gkRTR — Denote this as
o
w0

O(2) ~ 10" rad

One can write every phase shift in an atom interferometer in this
form!

Using this notation we can systematically group phase shifts!

Different example: AP = gkRPonz

Denote this as

O(3) ~ 10" rad
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Dimensionless parameters (for now)

Parameter | Definition
2o oTr
Vo -0
Fr feog
gl ) ggi
gQ,z FOT7;2

Smaller than the others

—» Initial conditions: 1073

— Recoil frequency: 1072V

— Gravitational potential: 1078

—— Recoil momentum: 10~11—=107"

Stanford Seminar — Michael Werner — 31.01.2025



Python algorithm

Created an open source Python algorithm that symbolically (!)
calculates the phase shifts using SymPy.

Let me show it to you!

bragg_quanta_upper_path

bloch_quanta_upper_path

bragg_gquanta_Llower_path

Interval #1 | Interval #2 | Interval #3 | Interval #4

K \

bloch_quanta_lower_path
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Python algorithm

Included:

Not included:

e (GR effects

* Doppler effect (1st and 2nd order)

-
H
-
QO
&
O
=

* Elastic scattering processes
(Bragg, Bloch)

Coriolis & Centrifugal effect

~inite speed of light (FSL)

nelastic processes (Single
photon, Raman)

3D Analysis

Numerical Gravity Model

e Added: Finite speed of light (FSL)

 Added: Inelastic processes
(Single photon, Raman)

Version #2

e Added: Numerical Gravity Model

Coriolis & Centrifugal effect

3D Analysis
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PHYSICAL REVIEW D 109, 022008 (2024)

If you want to read more
about this

Atom interferometers in weakly curved spacetimes using Bragg diffraction
and Bloch oscillations

Michael Wemer®," Philip K. Schwartz®," Jan-Niclas Kirsten-SiemB©,"* Naceur Gaaloul®,’
Domenico Giulini®,' and Klemens Hammerer®'
nstitus fir Theoretische Physik, Leibniz Universitit Hannover,
Appelstrafie 2, 30167 Hannover, Germany
*Instirut fiir Quantenoprik, Leibniz Universitit Hannover, Welfengarten 1, 30167 Hannover, Germany
*Zentrum fiir Angewandte Raumfahritechnologie und Mikrogravitation, Universitir Bremen,
Am Fallturm 1, 28359 Bremen, Germany

® (Received 18 October 2023; accepted 21 November 2023; published 29 January 2024)

e present a systematic approach to determine all relativistic phases up to O{c™?) in light-pulse atom
interferometers in weakly curved spacetime that are based on elastic scattering—namely, Bragg diffraction
and Bloch oscillations. Our analysis is derived from first principles using the parametrized post-Newtonian
formalism. In the treatment developed here, we derive algebeaic expressions for relativistic phases for
arbitrary interferometer geometries in an automated manner. As case studies, we consider symmetric and
antisymmetric Ramsey-Bordé interferometers, as well as a symmetric double diffraction interferometer
with baseline lengths of 10 m and 100 m. We compare our results to previous calculations conducted for a

Python algorithm

Atom interferometers in weakly curved spacetimes using
Bragg diffraction and Bloch oscillations

Python algorithm of: Atom interferometers in weakly curved spacetimes using Bragg diffraction and Bloch oscillations
This dataset contains the Python algorithm to reproduce all results in this manuscript:
Instructions on how to run the code can be found in the ReadMe.md file.

GitLab Clone Link to the repository: https://gitlab.uni-hannover.de/michael.werner/atom-interferometers-in-weakly-curved-
spacetimes-using-bragg-diffraction-and-bloch-oscillations.git

Data and Resources

PPN_Python_Atom_IF_Analysis.zip

e® Explore ~
“  Complete dataset: Zip file of the Python algorithm including results for... File size: 3.5 MByte

S

3%  README.md
ReadMe file. File size: 7.7 KByte

atom interferometry  physics
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Mach-Zehnder interferometer.

DOIL: 10.1103/PhysRevD.109.022008

L INTRODUCTION

Atom interferometers (IFs), at the forefront of quantum
metrology, are highly precise instruments widely utilized
in various rescarch domains. They have been employed in
diverse fields. including the determination of the fine-
structure constant [1,2], serving as quantum sensors for
measuring the gravitational ficld of the Earth [3-6],
proposed measurements of gravitational waves [7-10],
and investigations of fundamental physics and alternative
gravitational models [11-15], as well as measurements of
tume dilation and gravitational redshift [16-20].

The interpretation of measurements of the gravitational
redshift has ignited extensive discussions regarding the
mfluence of relativistic effects in atom IFs [21-24). These
discussions have underscored the need for interferometry
with internal superposition states [19.20] enabling the
effective detection of gravitational redshift effects. As a
result, there has been significant research focus on IFs
employing inclastic scattering processes, such as single-
photon or Raman transitions, commonly referred to as
“clock interferometry.” However, inclastic scattering intro-
duces additional systematic effects due to the different
mternal atomic states. In contrast, atom [Fs based on clastic
scattering processes, such as Bragg diffraction [25.26] and
Bloch oscillations [27.28), currently exhibit the highest
sensitivity. This advancement has facilitated groundbreaking
measurements, such as the precise determination of atomic
recoil—and, consequently, the fine-structure constant—with

2470-0010/2024/ 109(2)/022008(24)

022008-1

unprecedented accuracy [2]. The gravitational redshift can-
not be directly measured with these IFs; it 1s worth noting
that phases involving relativistic effects and even extensions
to the standard model (SME) can still manifest in these atom
IFs [29,30).

Dimopoulos et al. [31,32] presented the determination
and detailed listing of phases induced by special and
general relauvistic effects specifically for the Mach-
Zehnder IF. However, the laborious algebraic calculations
nvolved make 1t difficult to reproduce and extend these
results to more general IF geometries. Here, we propose a
systematic framework for computing relativistic phases
in arbitrary atom IFs realized by elastic scattering. Our
approach employs rigorous expansions in relevant small
parameters, implemented through computer algebra in
Python [33]. This enables automated algebraic calculations
of relativistic phases up to the desired order of accuracy.
We compute and display the phases for three common
IF geometries: the symmetric Ramsey-Bordé interferometer
(SRBI), antisymmetric Ramsey-Bordé interferometer
(ARBI), and symmetric double diffraction interferometer
(SDDI). The computer algorthm 1s, however, capable of
calculating phases for more general IF geometries. For cach
geometry, we algebraically list and quantitatively illustrate
the leading relativistic phases. Our analysis focuses on
atom IFs with baseline lengths of 10 m and 100 m, inspired
by numerous operational or under-development setups
[10,34-38). Furthermore, we provide a detailed comparison

© 2024 Amencan Physical Society
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For the rest of today we'll
concentrate on spiciness level two:

L Q N
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3. Measurements of
gravitational curvature
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Phase shift results (without FSL)
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m
# | Order | Mty SRBI SDDI Ah « | Origin
1 % G xR Ty+T 2Ty + 2T T Non-relativisti
: B (‘ZZ%R+ 21’?3) “We - G1rRRRr = 29krTr(TB + TR)
W._/‘ S ~
3 Re R ~Tg 2T, ~Tp 1
yaYi ) o = )

4 0@3) RrZ0Gar -Tg—Tg —2Tg —2Tp ~Tg—Tg 2 Gravity gradientu \
5 ReVoGar 3Tp-Tyx | 3Tp-2Ty | -3T5-Ty 3
6 ReReGar —ITp—LTp | -3Tp—3Tg | —3T5-1Tx | 4
7 RrG1RG2R ITg+ LT | 3Tp+ 1Ty ITs+ 5Tg 4
8 RRG R A1y -1 | 0 A1y -l | 3
9 R VoGap -1Tx ~Tg -1Tx 3
10 ReReGo s ~3Tx —11, ~3Tx 3
11 RrG1rG2B T+ 3Ty 1T+ 3Ty T+ 3Ty 4

—%TB -3T, | 9Tz - 6T —%TB -3T 3 Doppler effect

3Tp +3Tg 6Tp + 6T 3Tp +3Tg 2

-3Ty 3Ty -3Ty 3

3Tp+ 3T, | ST+ 7Ty 3T+ 3Tk 2

~Tp 2T, ~Tp 1

-2Tx —4T, —2Tg 1

0 2T Ty 1

1Ty 0 ~1Tg 2

3T — 3Ty 0 —3Tp + 3Tx 2

ATy +21, | O 1Ty - 2Ty 1

—Ty—Tp 0 Ty + 5T 1

0 0 2T 1



Phase shift results (without FSL)

Proportionality

Interesting asymmetry

RrRp

> Rk 0TS
weTg  RiGop = — B 2R

m

?RZOQZ,R

RrVoG2r

Most phases scale

RRQB G 2,R

with a factor of two

RRQI,RQLR

(spacetime area).

RrGar

But this one not!

RrVoG2p

Can we use this to

QRRB g 2,B

gain information about

RRgl,RQZ,B

the gravity gradient?
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Co-located Gradiometric Interferometer (CGl)

0 T 2Tr ¢

VLBAI figure adapted from Schilling et al. ,,Gravity field modelling
for the Hannover 10 m atom interferometer*”

Stanford Seminar — Michael Werner — 31.01.2025




CGl phase comparison

Ditferential phase shitt is proportional to the gravity gradient

N2hk2T T3 o

—

AP = —2N?Go g Rz = —2

Phase comparison of a MZI and a SDDI in a CGI configuration (no FSL phases) N2 h k2 T 3
MZI | SDDI Phase Phase Magnitude [rad] | Differential signal f — 2 R R
2 2 NkpgTx NRrG 1 x 1.4 % 10’ 0 m
2 | =2 NikgzoLTz | NZyGrrRy 20 0
2 | =2 | NkgvoliTa | NVyGrrRr 14 0
¢ ¢ NiggliT | NG rGarRr 14 0
2| 0 Ve | N2G, K2 1.5 %1072 )
12| 12 | New'l NG Fr 23%107° 0
12 | 12 M NF=G1 Vo 2.4%107° 0

Stanford Seminar — Michael Werner — 31.01.2025



Phase shift is small (a few mrad).

What about FSL?
Does this give us a problem?
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FSL)

(

Finite speed of light

IBs2.1

M

IBs1

)

Example: Two photon Bragg transitions

LO
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)
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Finite speed of light mitigation

Can we mitigate this?

Example: Two photon Bragg transitions

ARNPRT Nik\ “
A(DFSL = K (4gTR — V0 ) + A(I)(),
mc m
. . 2hN?k*
with a constant shift A®g = — (2zL — 20 — ZU0)-
,Lower laser"” ,Upper laser”

(Or: Mirror position,...)
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Finite speed of light mitigation

hk(1+ﬁDet) Alter the last AlF pulse by:

-

5 V0 + B — 46Tk nik
ADCt(v()? TR) — hk
V() + — — gTR mc

This frequency chirp (~100 MHz) nullifies the FSL phase!
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Looks interesting so far, but the gravitational field is
very idealised...
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Complex gravitational fields

(n) e
Consider ¢(z) = ¢o + gz + Z gb e

with a non-trivial I'(z) = @§¢(z) = Gravitational curvature

Example: VLBAI Hannover

; regioln of interest (ROI) -
. .
| | — 5-
B 4
N g
: 2-
‘ groundﬂocTr 1 -

600 605 610 615 —29 —28 —27 —26

/@ 9(2) = Gret [um /s?] ['(z) [10° E]
basement
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CGIl: Numerical simulation in VL BAI

—1.675 A

—1.700 - - —2.60

—1.725 - e
CGl 1750 itati
1750 > 2. Gravitational
Phase |[Sed
N 2 Curvature

—1.825 1

1

1

1
*

1

1
*

1

1

—1.850 -1

aosf AR = 0.44m

—5.8 A

—5.9 A
—6.0 1
—6.1 1

—6.2 A

ol A

—14.0

A®P(zy) [mrad]

—14.2 ~

-14.4

—14.6 A

—14.81 - —2.85

Ah = 1.75 m

- —2.90

2o |m]
Stanford Seminar — Michael Werner — 31.01.2025




Averaging gravity

Where are the atoms ,on average”?

Answer: |t depends on the averaging process!

1/n

2TR

2Ol = | g7 [ 1) =zl

2 3

4 5 :
0.73Ah | 0.77Ah 1 0.79Ah 10.82 Ak '

n

lz(Il,,
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Estimator for grav. curvature

We can now define a novel estimator I'(zg) for the grav. curvature:

Step 1: Convert phase to grav. curvature using the scale
factor.

~ A(I) 20
P(20) = (20)
f
Step 2: Shift the height via the cubic mean of the trajectory.
2 AP(zo — ||2(t
'(z0) = (20 — ||12(0)l5)
f
Reminder:
f _ 2]\72]1]@%%13_%\_/'* Motivation for the cubic mean.
m
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— —1.70-
—1.751

—_

mrad

1.80+

AD

—1.89-

AP [mrad]

—14.0

—14.4-

AP [mrad]

—14.8-
1Tr =0.6s, Ah =~ 1.75m

0 1 2 3 4
2o |m]
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Relative Error AL'/(T) [%]

0.1 1
a Ah
* °[10.15m 3.5m
o
F 10 ) I
= ® . . ( A(I)
) - - ,Unshifted estimator -
/"e'l\ ® o
d " .
% . A
I - Qur estimator T’
Ay
g)o 2 @
g 8 e
O ® o
Z 1 . . Roughly one order of
g : magnitude improvement in
1 - the estimation!
1 10 100

AT [E] (Root mean square error)
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Reference

Those findings have been
published on the ArXiv

And the Python algorithm in the
LUH Data Repository

Local Measurement Scheme of Gravitational Curvature
using Atom Interferometers

2409.03515v3 [quant-ph] 4 Oct 2024

Dataset for the paper “Local Measurement Scheme of Gravitational Curvature using Atom Interferometers".

Local Measurement Scheme of Gravitational Curvature using Atom Interferometers

Michael Wemer",! Ali Lezeik,” Dennis Schlippert,” Emst M. Rasel,” Naceur Gaaloul,” and Klemens Hammerer'

!Institut fur Theoretische Physik, Leibniz Universitat Hannover, Appelstrafe 2, 30167 Hannover, Germany
*Institut fir Quantenoptik, Leibniz Universitdt Hannover, Welfengarten I, 30167 Hannover, Germany
(Dated: October 7, 2024)

Light pulse atom interferometers (AlFs) are exquisite quantum probes of spatial inhomogeneity and gravi-
tational curvature. Morcover, detailed measurement and calibration are necessary prerequisites for very-long-
baseline atom interferometry (VLBAI). Here we present a method in which the differential signal of two co-located
interferometers singles out a phase shift proportional to the curvature of the gravitational potential. The scale
factor depends only on well controlled quantities, namely the photon wave number, the interferometer time and
the atomic recoil, which allows the curvature to be accurately inferred from a measured phase. As a case study,
we numerically simulate such a co-located gradiometric interferometer in the context of the Hannover VLBAI
facility and prove the robustness of the phase shift in gravitational ficlds with complex spatial dependence. We
define an estimator of the gravitational curvature for non-trivial gravitational ficlds and calculate the trade-off
between signal strength and estimation accuracy with regard to spatial resolution. As a perspective, we discuss

q
P

the case of a time-d

gravitati
L INTRODUCTION

AlFs are high-precision instruments used in a wide variety
of research fields. Their versatility includes tasks such as deter-
mining the fundamental constants [1-4], serving as quantum
sensors to measure Earth’s gravitational field [5-7]. proposing
measurements for gravitational wave detection [8-10], explor-
ing fundamental physics and alternative gravitational mod-
els [11-14], and performing measurements related to time
dilation and gravitational redshift [15-18]. In particular, their
accuracy as sensors of gravitational fields and their gradients
is becoming increasingly important for applications in civil
engineering [19], inertial sensing [20] and geodesy [21-26].

AIFs are utilized to measure the gravitational field, there
they provide information about the linear gravitational accel-
eration g along the atomic trajectory. This approach is highly
accurate because the leading order phase shift A® = gkT}
connects the desired value of g with the wave vector k and
the interferometer time Tk, both of which are known with
very high precision. For measuring the (constant) gravitational
gradient, a gradiometric experimental setup is employed, in-
volving a comparison of g-measurements from two spatially

| field and corresponding measurement strategies.

(@) () =

FIG. 1. Depiction of the co-located gradiometric interferometer (CGI)
setup consisting of a SDDI (green) and a MZI (bluc) in a gravitational
ficld sourced by the mass density p(r. f). (a) Position of the CGI in
a large baseline interferometry setup as as determined by the initial
height zp. CGI geometry shown in more detail (b) in the laboratory
frame and (c) in the freely falling frame. | V) denotes a momentum
cig with N um q as compared to the initial wave
packet. The speed of light was set infinite for the laser pulses in this
plot.

introduced non-trivial gravitational fields, which allow the mea-
surement of phases along the atomic trajectory to probe this
non-linearity, have been exploited in [35, 36] and led to the
proposed gravitational Aharonov-Bohm effect [37]. Measuring
anomalies in the gravitational gradient is also used to detect
inhomogeneities in the gravitational field [19] and will become
evermore important for civil engineering and quantum metrol-
ogy. Resolving a spatially varying gravity gradient to high
accuracy with a gradiometric AIF setup is, however, equiva-
lent to comparing g-measurements in close proximity. This
procedure is therefore increasingly error prone, because of the
relative uncertainty in the position of the atomic ensembles,
compared to the separation of the two constituent AIFs.

In this analysis, we introduce a novel geometry for AIFs that
is exclusively sensitive to the gravitational curvature, that is,

. > separated gravimeters, effectively interpolating the g values
All (numerical) figures are produced by this algorithm. The analytical phase calculation for the MZI, SDDI -- and ultimately the CGlI s 'h.c i, ’P“P"". positions. Such gradiometric expeniments
‘ X i o ) S are theoretically limited by the measurement uncertainty of the
-- are also done by this code for the case of an idealized gravitational potential. (S phase shift and the uncertainty of the height difference between
the two interferometers. Another way to extract knowledge
An up-to-date version can be found in: https://gitlab.uni-hannover.de/michael.werner/vibai-phase-shift-analysis/ about the gravity gradient is done using more elaborate AIF ge-
ometries [27]. In these cases, however, the phase shift depends
non-linearly on the gravitational field, making an estimation

Data and Resources more complicated.
Local Measurement Scheme of Gravitational... State-of-the-art AIFs are being constructed with increas-
®  ZIP File of complete code with figures. File size: 188.6 KByte ingly Somgec hasciimay [5-31] and Sues aificiont lacpe o=
' A mentum transfer (LMT) techniques [32-34], extending beyond
the region where the assumption of a constant gradient of the
0% README.md gravitational field remains valid. The transition to non-trivial
README file. File size: 2.0 KByte gravitational curvature is not only a challenge for large base-
line interferometers, but can also be seen as an opportunity
for experiments with gravitational test masses. Deliberately

atom interferometry  gravitational field ~ gravitational gradient
L T —
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OQutlook / Summary
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Outlook / Summary

 We presented an open source Python algorithm to quickly
calculate phase shifts in (pretty much) arbitrary geometries.

Want to include even more effects: Clock interferometry, Mitigation schemes,

Coriolis effect, ...(Partially done in the transition from the #1 to #2 algorithm)

* |ncluded first order GR effects into the description.

Search for interesting geometries that might single out GR-related phases (for
next Gen AlFs, i.e. ~100m baseline)

 We introduced a novel AlF geometry — the ,CGI* — that
gives information about gravitational curvature.

Possibly useful in civil engineering and geodesy?
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Thank you for listening!
Any questions”

And also thanks to those people

.l

Hammerer group Gaaloul group (T-SQUAD)

Other Co-Authors: Ali Lezeik, Philip Schwartz, Domenico Giulini, Dennis Schlippert, and
Ernst M. Rasel
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Quick links:

PPN paper:
T L

PPN algorithm:
We looked @ [m]{-srass o

this code

\.
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Backup Slides
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Maxwell's equations: Geometric Coulomb gauge

We can define a flat Laplace operator via
Ao = 670:0; = 05+, + 0
And obtain the wave equations

-~ @(2) = d(2) — 9o
v\/ v

Aq A, = (1 o+ 1)L )(aOA + rzoo(a A, —0.A,)-T70,00A, +T7,0,A0 - 0,0,A)
C

v o

/\_/

+Z(F 0, A, + (0,17, )A +T7 A) + 0™

oty lVlO' lVO'

(/)

Christoffel symbols
(need to be calculated)
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Maxwell's equations: Geometric Coulomb gauge

X 0,4 _
AgaAo = (7 + D—=-0.4¢ — —5-0pA, + O(c ™),
C C

& G, 5,
Ag A, = (1 ~ 2y + 1)%)63Ax + yifaZAx +(2y + 1)L2¢ (0,4, -0.A,)

C C C

(1 y) 615] 4
— — (')/ + 1)_2 axaoAO + O(C ),
C

¢ 0,9 0,9
AgaA, = (1 —2(y + 1)%)83% + V?GZAy + 2y + 1)L2 ((9yAZ — GZAy)

C

1-2 2% -4
— |1 =20y + D=-10,0040 + O(c ™),
C

s X 5,
AgaA, = (1 — 2y + 1)6%)6%Az + y?@ZAZ + y?AZ
0.4 _
— (1 — 2y + 1)%]@(90,40 +0(c™).

C
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Maxwell's equations: [ eading order

Since we know k, =V, ® =0,

one obtains a gravitationally altered phase of

D(z,t) = g + koct £ ( + O(Tc™ %)

Additional height dependence of the phase!
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We can now extend the previous list of phase shifts:

Phase shift results Waa.

Phases in units of w
# | Order | Proportionality | SRBI SDDI ARBI Origin
44 | 003) GoG1rRr 28— 1)(Ty + Ty) 4B - 1)(Ty + Tp) 28— 1)(Tg + Tg) Post-Newtonian
45 | 0@ | RpGirVoRy | —521, - 22T, ~(13y +20)T — 20y + 41T L e iy Post-Newtonian
46 ReG1 R Vo BLUALLY L1 ~(10y + 1D)T5 — By + 1Ty BLUALLY L ALLY
47 RrG1 Vo LanVARLY I ARy ASLE (8B + 48y + 51)Tp + (48 + 30y + 38)T, | LBrly, B3Ry
2 128+165y+264 112y4242 128+165y+264 112y4242 128+165y+264 112y+242
48 ReG1 rRs B Oy B T + 22T, R B Oy B T + L2 T,
3 368+220y+278 48+93y+151 368+220y+278 48+93y+151 368+220y+278 48+93y+151
49 RrG1 R — 1(2)Y Ty— B, | el o T~ Bl e Tg - IR Ty - BT,
2 8y+17 10y+35 _ 8y+l7 10y+35 8y+17 10y+35
50 RrG1 RS i, Ry BTy - 22T, B ALLl S
2 43y-52 _43y-52 _43y-52
51 ReGirGip | T =Ty BTy S
2 6B+44y+51 6B+44y+51 6B+44y+51
52 RrG1RG 1B _:3+++TB _ﬁ+++TB _B+++TB
53 ReG1 G5 Vo | EEET, B+ 13y + 13)T, CambIAaLY
54 RRQI,RQLBRB 8’Y+11 TB (8')/ + ll)TB 87+11 TB
578-57 258-25 578-57 258-25 578-57 258-25
55 RrGoG1rG2R BT, + 22T, pRLE=L R N BT, + 2221,
2 T3 +12T 3T o +8T2(3T p+T) T3+ 12T 3T o +8T2(3T p+Tp) T3+ 12T 2T o +8T2(3T p+T) .
56 G3rRr YV 8~ B8R R 5 R £ ~ B R R 5 R £~ B8R R 5 R 3rd order grav. potential
: 872 412 872
5 T2+4T2(2T 5 +Tx) T2 4+4T2Q2T p+T5)
5’7 gS,RRR(VO B ZTR BT'R 0 B IiTR BT'R
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Backup: Coriolis & Centrifugal effects

(a) s Yo (b)
. Q), 7 West East
X X :
>/ K
3 4 Y
e E
B DI
R HLQL/'_ _________________ E
== E
i
Transition to Lab frame >
Y
. m . . T 2
L(r,7) = —7° +m7 - (wg X )+ Bl (wag X 7)° —mao(r),
N e’
v e —’
Coriolis Centrifugal
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Backup: Coriolis & Centrifugal effects

L(r,r) = %7’“2 + %ngbz sin”(0) + mwegr? — mo(r)

Lagrangian is quadratic in its arguments.
¥y
e
Analytical solution can be found!
%
I
hA(I)PrOp (rba tb) Ta, ta) — SZ (Zba tb) 2% ta,) + Sxy (xbv Yo, tby LasYas ta)

Discussed before New transversal motion

m

Sy (@b, Yo, 13 Tas Yas ta) = 3 1) [(xb —z4)" + (y — ya)2] + MWestr (TaYp — ToYa)

with wef = wa sin(fr,ap)
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Backup: Relativistic Atom-Light Interaction

Consider the next order correction to the electric dipole operator:

firs = —d-E(2)+ 5 |P(dx B(Z)) +he]

W_/ 2m
Electric dipole ~

Rontgen term

The electromagnetic fields are given by their classical solutions:

Electric/Magnetic fields Amplitudes
Ei(Z,t) = &(t)el® (% E(1) = —iwiAi(t) — Ay (1)
Bi(Z.t) = +B;(t)e®(Z:) Bi(t) = ikie. x Aq(t)
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Backup: Relativistic Atom-Light Interaction

First, we transform into the interaction picture w.r.t. the internal
Hamiltonian

A

d(t) _ eiﬁlt/hde—iﬁlt/h _ deg| >< | 1wegt

A A hQZ Z,p,t A +EA(7)V7 —(w: —w
0 = Heon + Z (2 ) eXgle (£ki(2)Z—(wi—weg)t)
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Backup: Stationary Spacetime

Spacetime metric of a rotating mass

( )

2
-1 -2%2 2% + 0"~V +0()

-V + 0 (1-2022) 1, + 0T,

\

From this we can calculate the motional Lagrangian

m

444 G
LR (r, ) = L(r, ) + i+ (e X 1) + o (we X 7)° e

1 3.2 (rx7)-Jg+O(c?)

Coriolis  Centrifugal  Frame-Dragging
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Backup: Experimental realization of 4-way beam splitter

<A

Mini Mach-
Zehnder
Interferometer
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Backup: Doppler effect

Lab frame Atomic rest frame

Zint
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Backup: Gradient mitigation

lk + Ak lk
: 0) :

,JUnwanted” additional phases
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Backup: Geopotential model

(C) icgem@gfz-potsdam,de (C) icgem@gfz-potsdam,de

Figure from ICGEM and adapted for better readability.
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Backup: Geopotential model

We can perform a multipole expansion of the gravitational
potential of the form:

"'ZZI(” H)+ZZ (1, 0,0)

n=2 m=1

¢(r, 0, ¢) =

With ,zonal” and ,tesseral” contributions:

J,P} (sin(6))
rl+1 ’

Z,(r,0) =

C" cos(mgp) + S’ sin(meyp)

n+1
r

T,..(r,0,0) = P, (sin(0))

A list of the J's, C's and S’s can be found in geodata catalogs.
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Backup: Geopotential model

-8
10 | — "
7= Rof- e
1077 | lz®oo|e
23R, 0)|/
10_12 - - Z4(Rea,9) /C2 Z | b :
" Zs(Rg, 0)|/c” onal contriputions
o 7 1 Z6(Reaa9) /02
10716 Yo Z:(Rg, 0)|/¢”
- ZS(R@a 0) /C2
107" :
\ | ‘
’ 1 2 T o107 w | GM,
Latitude 0 i":REB,Hzﬂ'/4_ — Reza
atitude ~
11 — |T,(Rg, /4, ¢) /c?
10 7 N T3(R®,7T/4, (,0) /C2
- T4(Reaa /4, @) /C2
1074 | B
Tesseral contributions
1077 B
10—20 ‘ﬂ | 7‘_(
- -3 0 5 T
Colatitude ¢
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Backup: Relativistic Atom-Light Interaction

ki(z) = (1 — (v + 1)Z_§)ki +Ogc™?, 0_4)

v+ 1gz

0i(2) = (1 >

5 )kzz +wit + O(Toc 2, ¢ %)
c

Two-Photon process: Depending direction of the momentum kick

v+ 1gz

O (2) = (1 -

5 >kRz + A®pgr, + O(Toc™?)
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Backup: Gravitational Redshift

How does this relate to the gravitational redshift?
Consider a resting observer at a height z with four velocity

u(z) = a(z) (8

Since four velocities always satisfy u,,(2)u(z) = —c* we

have B
ut(z) = (1 ¢6(2Z) : 0(&)) (8)

The observer then measures the following frequency:

W(z) =k (2)u(2) = —(1 2) | 0(0_4)>ck0

Stanford Seminar — Michael Werner — 31.01.2025




Backup: Raman ditfraction

W E
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Backup: Single Photon Transition

g)

hw

! hwR
* > D
0) k)
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Characteristic Strain

Baokuo AlFs for GW detection

10—15
10—16
10—17 [
10—18
10—19 |
10—20
10—21
10—22 |
10—23

10—24 . L Lol L I BT I AR TITT BT BT IR
10-6 10-5 10*1 10-3 10-2 01 1 10 102 10° 104

J1Hz]

From Abdalla et al. , Terrestrial Very-Long-Baseline Atom Interferometry: Summary of the Second Workshop*
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Backup: Full set of dimensionless parameters

Parameter | Definition Magnitude for 10 m baseline AIF
i = R (Bragg) i = B (Bloch)

Z o 0
Vo . 43x107°
Fr o 8.1x 10720
Go % 7% 10710
Z o 2.6%x107°
Zy e 2.8%x107°
H e 3.1%x107°
G, £ 42 %107 13x1078
G, I'7T? 52%107° 4.9x 107’
G, AcT; 48x 107" 1.4%x 107
R, t 3.9x 107" 12x107°

— Constant potential offset

— Finite speed of light

— [ hird order grav. potential
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Backup: Gradiometry #1: Measure g

Consider a MZI| configuration:

Phase shift: 8-Estimator:

N

g

/
A® = NgkrTi | __

Scale factor =
Known to high accuracy

How do we extract knowledge about the spatial variations of g?
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Backup: Gradiometry #2: Compare g2's

A

Usual procedure for gradiometry:

Z Z/—Ahv
( 9(z0 + Az)

Ag = g(z0 + Az) — g(20)

t Q(Zo)/ -

Az

Az

Let us model both in more complicated gravitational fields!

. . | A Ag
Estimator for gravity gradient: I'g = ——
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Backup: .Usual” gradiometry in complex fields

region of interest (ROI) _ l..oqecemcmscmccmscscesceasenn=- L G g ChaﬂgeS!

asures ,its” g.

D oM 2 over the height ditference.

It you want high spatial resolution T~
Make Az and Ah small

S

Higher measurement uncertainty <
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Backup: Separation Phase

4

2(1) +hk +hk :
N . K :}Az

i—»TR<—|—>I TR<—i>t

It was shown in REF how one can calculate the phase shift for
AlF, which not closes pertectly.

APge, = lAz - Ap

e
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Backup: Python algorithm

We implemented an open source algorithm to calculate the
phase shifts of each interferometer very quickly.

Time step #0 : Time step #1 : Time step #2 : Time step #3

The above initialization is the only thing that has to be done ,by
hand”. Everything else Is automated.
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Backup: Dimensionless description

We can use those parameters to rewrite everything dimensionless:

1 I’ I’
z(t):zo+vgt—§gt2 | 20,20752 | 60v0t3+...

[ =
\ = al

1 1 1
5(7_) = 2o + VoT — §gl,RRR72 + 592,}2207'2 -+ EQQ,RVOTS + ...

Using this notation we continue the whole analysis.
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Python algorithm

We implemented an open source algorithm to calculate the
phase shifts of each AlF very quickly.

The phase shitt calculation can quickly become lengthy and
prone 1o errors.

Global: Set a ,truncation order”, e.g. 4. (only analyze terms up to order 4)

lterate over each time step:

Calculate interaction times

Calculate interaction heights
Calculate partial results

U Throw away results exceeding the truncation orde

IR

The algorithm truncates dimensionless parameters exceeding a

certain number of small parameters. Making the calculation fast
and efficient!
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